Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Curriculum and Syllabus

for

B.Tech

Electrical and Electronics Engineering

(Three and Half Year Part Time)

Regulation 2015

(Based on OBE)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

VISION

To become a leader in providing education and training in the field of Electrical and Electronics Engineering to the aspiring graduates to be competent in their profession.

MISSION

- \triangleright To develop innovative, competent, efficient disciplined and quality electrical and electronics engineers.
- \geq To enrich knowledge and encourage the students to become entrepreneurs.
- \geq To produce Engineers who can participate in Technical Advancement and Social enlistment of the country and to meet the growing global challenges.
- \triangleright To prosper in Academic Activities by continual improvement in Teaching methods, Laboratory facilities and Research activities.
- \geq To develop consultancy for various industries.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1	Our graduates are professionally competent and apply the concepts of
	mathematics, science and engineering to solve problems in Electrical and
	Electronics Engineering and related fields.
	Our graduates stay relevant in their chosen profession through lifelong learning
PEO2	and demonstrate social and ethical responsibility.
PEO3	Our graduates perform both independently and as a member of a team in
	executing projects.

Mapping of Mission (MS) with Program Educational Objectives (PEOs)

	PEO1	PEO2	PEO3
MS1	3	1	2
MS2	3	2	3
MS3	2	3	2
MS4	2	3	3
MS5	2	1	2

1- Slightly

2 – Supportive

3-Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

GRADUATE ATTRIBUTES:

1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the programme.

2. Analytical Skills: Identify, formulate, analyze and solve diverse engineering problems.

3. **Design:** Solution for complicated open–ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment and society.

4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.

5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.

6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety and legal issues to serve the society effectively.

7. Environment and Sustainability: Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.

8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

9. Leadership and team work: Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.

10. Communication Skills: Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.

11. Project management and Finance: Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.

12. Life-long learners: Update the technical needs in a challenging world in equipping themselves to maintain their competence.

Mapping of Program Educational Objectives (PEOs) with Graduate Attributes (GAs)

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
PEO1	3	3	2	3	2	1	1	2	1	2	2	2
PEO2	2	1	3	1	2	2	3	3	2	2	2	3
PEO3	2	2	3	2	2	1	2	2	3	2	3	2

1-Slightly

2 – Supportive

3 – Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PROGRAMME OUTCOMES (POs)

- 1. Apply the knowledge of mathematics, science, engineering fundamentals, to the solution of complex problems in Electrical and Electronics Engineering.
- 2. Identify, formulate, research literature and analyze complex Electrical and Electronics Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design solutions for complex Electrical and Electronics Engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions, related to Electrical and Electronics Engineering.
- 5. Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex Electrical and Electronics Engineering activities with an understanding of the limitations.
- 6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

- 8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PEO 1	3	3	3	2	2	1	1	1	1	2	2	1
PEO 2	3	2	1	3	1	3	3	2	3	2	2	3
PEO 3	3	2	3	3	3	2	2	3	3	2	3	3
1- Slightly related				2 – Si	upport	ive			3 - H	ighly		

Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA 12
PO1	3	2	2	1	1	2	1	1	1	2	2	1
PO2	2	3	3	2	1	2	1	1	2	1	1	2
PO3	2	2	2	3	3	1	2	1	1	2	1	2
PO4	2	2	3	3	1	2	1	1	2	2	1	2
PO5	2	1	3	2	3	3	3	2	2	3	1	2
PO6	3	2	2	1	1	2	1	1	1	2	2	1
PO7	2	2	1	1	2	3	2	3	2	1	2	2
PO8	2	1	1	2	1	3	2	2	2	3	1	2
PO 9	2	1	1	2	3	3	2	2	3	3	1	3
PO10	2	2	1	1	2	3	2	3	2	1	2	2
PO11	2	1	2	3	2	3	1	3	3	2	1	3
PO12	2	2	2	3	3	1	2	1	1	2	1	2
1- Slightly					2 – Supportive				3 - Highly			

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Curriculum and Syllabus

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

CURRICULUM 2015

SEMESTER I

Code No.	Course Title	L	Т	Р	С
PMA101	Algebra, Differential Calculus and their Applications	3	1	0	4
PAP 102	Applied Physics	3	1	0	4
PAC103	Applied Chemistry	3	1	0	4
PEE 104	Electric Circuit Analysis	3	1	1	5
		12	4	1	17

SEMESTER II

Code No.	Course Title	L	Т	Р	С
PMA 201	Calculus and Laplace Transforms	3	1	0	4
PEE 202	Electromagnetic Field Theory	3	1	0	4
PEE 203	Electronic Devices and Circuits	3	1	0	4
PEE 204	Electrical Machines – I	3	1	1	5
		12	4	1	17

SEMESTER III

Code No.	Course Title	L	Т	P	С
PEE301	Power Plant Engineering	3	0	0	3
PSC 302	Entrepreneurship Development	2	0	0	2
PEE303	Electrical Energy Utilization and Conservation	3	1	0	4
PEE304	Electrical Machines – II	3	1	1	5
		11	2	1	14

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu
 Web: www. pmu.edu

SEMESTER IV

Code No.	Course Title	L	Т	Р	С
PEE 401	Transmission & Distribution of Electrical Power	3	0	0	3
*** 402	Environmental Studies	3	0	0	3
PEE 403	High Voltage Engineering	3	1	0	4
PEE 404	Control Systems Engineering	3	1	1	5
		12	2	1	15

SEMESTER V

Code No.	Course Title	L	Τ	Р	С
PEE 501	Protection & Switchgear	3	0	0	3
PEE ***	Elective – 1 (Digital Logic Circuits)	3	0	0	3
PEE 503	Linear Integrated Circuits	3	1	0	4
PEE 504	Power Electronics	3	1	1	5
		12	2	1	15

SEMESTER VI

Code No.	Course Title	L	Т	Р	С
PEE ***	Elective – 2 (Microprocessors and Microcontrollers)	3	0	0	3
PEE 602	Power System Analysis	3	1	0	4
PEE 603	Solid State Drives	3	1	0	4
PEE 604	Measurements and Instrumentation	3	1	1	5
		12	3	1	16

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

SEMESTER VII

Code No.	Course Title	L	Τ	Р	С
PEE 701	Electric Vehicles and Power Management	3	0	0	3
PEE 702	Power System Operation andControl	3	0	0	3
PEE ***	Elective – 3 (Special Electrical Machines)	3	0	0	3
PEE 704	Major Project	0	0	12	12
		9	0	12	21

OVER ALL CREDITS = 115

ELECTIVE GROUP – 1 :

Code No.	Course Title	L	Т	Р	С
E11	Design of Electrical Apparatus	3	0	0	3
E12	Control and Maintenance of Electrical Machines	3	0	0	3
E13	Advanced Control System Engineering	3	0	0	3
E14	Digital Logic Circuits	3	0	0	3
E15	Total Quality Management	3	0	0	3
E16	Industrial Automation	3	0	0	3
E17	Bio-Medical Instrumentation	3	0	0	3
E18	Smart Grids	3	0	0	3

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

ELECTIVE GROUP – 2 :

E21	Power Electronics for Renewable Energy Systems	3	0	0	3
E22	Wind Energy Conversion Systems	3	0	0	3
E23	Pollution performance Analysis of Electrical Systems	3	0	0	3
E24	Renewable Energy Technology	3	0	0	3
E25	Electrical Power Quality	3	0	0	3
E26	Microprocessors and Microcontrollers	3	0	0	3
E27	Micro Electro Mechanical Systems (MEMS)	3	0	0	3
E28	Disaster Management	3	0	0	3

ELECTIVE GROUP – 3 :

E31	Cyber Security	3	0	0	3
E32	Solar and Energy Storage System	3	0	0	3
E33	Sustainable Energy Utilization	3	0	0	3
E34	Special Electrical Machines	3	0	0	3
E35	Energy Management and Auditing	3	0	0	3
E36	Signals and Systems	3	0	0	3
E37	Digital Signal Processing	3	0	0	3
E38	HVDC Transmission	3	0	0	3

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ALGEBRA, DIFFERENTIAL CALCULUS AND APPLICATIONS

Cours	se Outcomes(PMA 101):	Domain	Level
C01	<i>Explain</i> the Properties of eigen values and eigen vectors of the matrices, To <i>Use</i> orthogonal and similarity transformation and to <i>Change</i> the quadratic form to Canonical form	Cognitive	Understanding Understanding Understanding
CO2	<i>Define</i> and <i>Compute</i> the radius and circle of curvature in cartesian and polar coordinates and to <i>Explain</i> evolutes and envelopes.	Cognitive	Remembering Understanding Understanding
CO3	<i>Explain</i> the convergence of series of positive terms, alternating series, and power series using tests of convergence	Cognitive	Understanding
CO4	<i>Compute</i> total and partial derivatives, Taylor series expansions of functions and the extremum of functions and their applications.	Cognitive	Understanding
CO5	<i>Solve</i> the linear equations of second and higher order with constant and variable coefficients and simultaneous first order differential equations and to <i>Apply</i> Method of variation of parameters to <i>Solve</i> the differential equation.	Cognitive	Applying Applying Applying

SUBCODE	SUB NAME	L	Т	Р	C		
PMA 101	Algebra, Differential Calculus And Their	3	1	0	4		
	Applications						
C:P:A = 3:0:0		L	Т	Р	Η		
		3	2	0	5		
UNIT I MATRICES	A				15		
Eigen values and Eigenve	ctors of a real matrix -Properties of Eigen valu	es and	l Eige	n vec	tors		
- Cayley-Hamilton theore	em (excluding proof) - Similarity transformation	on (C	oncep	t onl	y) –		
Orthogonal matrix - Orth	ogonal transformation of a symmetric matrix	to di	iagona	al for	m –		
Reduction of quadratic for	rm to Canonical form by Orthogonal transforma	ation.	-				
UNIT II GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS 15							
Curvature - Cartesian and polar co-ordinates - Centre and radius of curvature - Circle of							
curvature – Involutes and evolutes – Envelopes – Properties of envelopes and evolutes.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu
 Web: www. pmu.edu

UNIT III INFINITE SERIES

Sequences – Convergence of series – General properties – Series of positive terms – Tests of convergence (Comparison test, Integral test, Comparison of ratios and D'Alembert's ratio test – Statement of theorems and problems only) – Alternating series – Series of positive and negative terms – Absolute and conditional convergence – Power Series – Convergence of exponential, logarithmic and Binomial Series (Simple problems only)

NAAC ACCREDITED

UNIT IV FUNCTIONS OF SEVERAL VARIABLES

Functions of two variables – Partial derivatives – Total differentiation – Taylor's expansion – Maxima and Minima – Constrained maxima and minima – Lagrange's Multiplier method – Jacobian Determinants.

UNIT V ORDINARY DIFFERENTIAL EQUATIONS AND APPLICATIONS

15

15

15

Linear equations of second and higher order with constant and variable coefficients (Euler's and Legendre's equations) – Simultaneous first order linear equations with constant coefficients – Method of variation of parameters - Applications to electrical circuit problems.

	LECTURE	TUTORIAL	TOTAL
	45	30	75
TEVT DOOVS			

TEXT BOOKS

- 1. Grewal, B.S. Higher Engineering Mathematics, 40th Edition, Khanna Publication, Delhi, 2007.
- 2. Kreyszig, E, Advanced Engineering Mathematics, Eighth Edition, John Wiley and Son(Asia) Ltd, Singapore, 2001.

REFERENCE BOOKS

- 1. Bali N.P and Narayana lyengar, Engineering Mathematics, Laxmi Publications (P) Ltd, New Delhi, 2003.
- 2. Veerarajan T, Engineering Mathematics Fourth Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2005.
- 3. Kandasamy P., Thilagavathy K, and Gunavathy K, Engineering Mathematics Volume I, II and III, S. Chand & Co, New Delhi, 2005.
- 4. Venkataraman M. K, Engineering Mathematics, Volume I and II Revised enlarge Fourth Edition, The National Publishing Company, Chennai, 2004.

E REFERENCE BOOKS

www.nptel.ac.in

Advanced Engineering Mathematics Prof. Pratima Panigrahi

Department of Mathematics Indian Institute of Technology, Kharagpur.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus GAs mapping

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3	2								1	1	2
CO 4	3	2			1					1	1	1
CO 5	3	2			1					1	1	1
	15	6	0	0	2	0	0	0	0	5	3	6

0 -No relation 1 - Low relation 2 - Medium relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

APPLIED PHYSICS

Cours	se Outcomes(PAP102):	Domain	Level
CO1	<i>Identify</i> the basics of mechanics, <i>explain</i> the principles of	Cognitive	Applying
	elasticity, viscosity and <i>determine</i> its significance in	Psychomotor	Mechanism
	engineering systems and technological advances.		
CO2	Describe the production, propagation, perception	Cognitive	Analyze
	& analysis of acoustical wave and locate basic acoustical	Affective	Receiving
	problem encountered in constructed buildings.		
CO3	Understand the fundamental phenomena in optics by	Cognitive	Understanding
	measurement and describe the working principle and	Psychomotor	Mechanism
	<i>application</i> of various lasers and fibre optics.	Affective	Receiving
CO4	Analyse different crystal structures, discuss and use	Cognitive	Analyze
	physics principles of latest technology by visualizing.	Psychomotor	Mechanism
		Affective	Receiving
CO5	Develop Knowledge on engineering materials, its	Cognitive	Applying
	properties and <i>application</i> .		

COURSE CODE	COURSE NAME	L	Т	Р	С
PAP102	APPLIED PHYSICS	3	1	0	4
C:P:A = 2.8:0.8:0.4					
		L	Т	Р	Η
		3	1	0	4
UNIT I MECHANI	CS AND PROPERTIES OF MATTER		•	9+6	•••••••

Mechanics: Force - Newton's laws of motion - work and energy - impulse and momentum - torque - law of conservation of energy and momentum - Friction.

Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Classification of elastic modulus - Moment, couple and torque - Torsion pendulum - Applications of torsion pendulum - Bending of beams - Experimental determination of Young's modulus: Uniform bending and non-uniform bending - I shape girders.**Viscosity:** Coefficient of viscosity - Laminar flow - streamline flow - turbulent flow - Reynold's number - Poiseuille's method.

UNIT II ACOUSTICS, ULTRASONICS AND SHOCK WAVES	9+6
Acoustics: Classification of sound - Characteristics of musical sound - Loudness	- Weber
Fechner law - Decibel - Absorption coefficient - Reverberation - Reverberation time -	- Sabin's
formula (growth and decay) - Factors affecting acoustics of buildings (reverberation	on time,
loudness, focussing, echo, echelon effect - resonance and noise) and	d their
remedies.Ultrasonics: Production: Magnetostriction and Piezoelectric methods	- NDT:
Ultrasonic flaw detector. Shock waves: Definition of Mach number - Description of	a shock
wave - Characteristics - Methods of creating shock waves.	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

9+6

NAAC ACCREDITED

UNIT III OPTICS, LASERS AND FIBRE OPTICS

Optics: Dispersion - Optical instrument: Spectrometer - Determination of refractive index and dispersive power of a prism - Interference of light in thin films: air wedge - Diffraction: grating. **LASER**: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO₂ laser - Semiconductor Laser (homojunction) - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system

UNIT IV SOLID STATE PHYSICS

Crystal Physics: Lattice - Unit cell - Lattice planes - Bravais lattice - Miller indices - Sketching a plane in a cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing density for SC, BCC, FCC and HCP structures. **Semiconductors**: Semiconductor properties - Types of semiconductor - Intrinsic - Extrinsic: P-type and N-type semiconductor - PN junction diode - Biasing - Junction diode characteristics.

UNIT V NOVEL ENGINEERING MATERIALS AND BIOMETRICS

9+6

9+6

Novel Engineering Materials: Introduction - Metallic glasses: Melt spinning technique, properties, applications - Shape Memory Alloys: Transformation temperature, working of SMA, characteristics - Biomaterials: Properties, interaction of biomaterials with tissues, applications - Nano phase materials: Production, properties and applications. **Biometrics:** Introduction - definition - instrumentation - devices - advantages

TEXT BOOKS

- 1. Avadhanulu M. N. and Kshirsagar P. G., "A Text Book of Engineering Physics", 7th Enlarged Revised Edition., S. Chand & Company Ltd., New Delhi, 2005.
- 2. Senthil Kumar G., " Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2003.
- 3. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2005.
- 4. Prabu P. and Gayathri P., " Applied Physics", PMU Press, Thanjavur, 2013

REFERENCE BOOKS

- 1. Gaur R.K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publishers, New Delhi, 2001.
- 2. Pillai S.O., "Solid State Physics", 5th Edition, New Age International Publication, New Delhi,2003.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC AC

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

REFERENCE BOOKS

- 1. Srinivasan M. & others, "A text book of Practical Physics", Sultan Chand & Sons, 2001.
- 2. Shukla R.K., "Practical Physics", New Age International Publication, New Delhi, 2011.
- 3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	30	30	105

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
C01	3	2	2	2	1	-	-	-	1	-	-	1
CO2	3		1		1	-	-	-		-	-	1
CO3	3	2	2	2	1	-	-	-	1	-	-	1
CO4	3	2	2	2	1	-	-	-	1	-	-	1
CO5	3		2			-	-	-		-	-	1
Total	15	6	9	6	4				3			5
Scaled to 0,1,2,3 scale	3	2	2	2	1				1			1

Mapping of CO's with GA's:

1 - Low, 2 - Medium, 3 - High

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

APPLIED CHEMISTRY

Cours	se Outcomes(PAC103):	Domain	Level
CO1	<i>Identify</i> and <i>describe</i> the various water quality parameters and methods to purify water in contest with boilers and	Cognitive Psychomotor	Applying Kowwords
	domestics usage.	rsychomotor	Keywolus
CO2	Explain the fundamental principles of electrochemical	Cognitive	Evaluating
	reactions, its applications in redox reactions and calculate	Psychomotor	Keywords
	the different electrochemical processes.		
CO3	Interpret thetypes of corrosion, use and measure its	Cognitive	Understanding
	control by various methods including protective	Affective	Receiving
	techniques.	Psychomotor	Mechanism
CO4	Describe, Illustrate and Discuss the generation of energy	Cognitive	Remembering
	in batteries, nuclear reactors, solar cells, fuel cells and	Cognitive	Understanding
	anaerobic digestion.	Affective	Responding
CO5	Apply and measure the different types of spectral	Cognitive	Applying
	techniques for quantitative chemical analysis and	Cognitive	Evaluating
<i>list</i> nanomaterials for various engineering processes.		Psychomotor	Mechanism

COURSE CODE	COURSE NAME	L	Т	Р	С
PAC103	APPLIED CHEMISTRY	3	1	0	4
C:P:A = 2.8:0.8 :0.4		L	Т	Р	Η
		3	1	0	4

Theory PartUNIT I WATER TECHNOLOGY7 + 8Sources and types of water – water quality parameters – BIS and ISO specifications- hardness:
types and estimation of hardness (problems) - alkalinity: types and estimation (problems) – boiler
feed water – requirements – disadvantages of using hard water in boilers – internal treatment,
external treatment – demineralization process – desalination using reverse osmosis –domestic
water treatment - Effluent treatment processes in industries8+5

Basic concepts of conductance – Kohlraush's law and conductometric titrations –electrode potentials– Nernst equation: derivation and problems - reversible and irreversible cells – electrolytic and electrochemical cells– emf and its measurements - types of electrodes-reference electrodes - primary and secondary - glass electrode - determination of pH using quinhydrone and glass electrodes - electrochemical series and its applications - Galvanic cells and concentration cells - potentiometric titrations - redox titrations.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT III CORROSION AND PROTECTIVE COATINGS

9+4

9+6

Corrosion- causes- types-chemical, electrochemical corrosion (galvanic, differential aeration), corrosion in electronic devices, corrosion control - material selection and design aspects - electrochemical protection – sacrificial anode method and impressed current cathodic method. **Protective coatings**: paints- constituents and functions - electroplating of copper and gold, Electroless plating - Distinction between electroplating and electroless plating, advantages of electroless plating, electroless plating of nickel and copper on PCB.

UNIT IV ENERGY STORAGE DEVICES AND NUCLEAR ENERGY 12 + 7

Energy storage devices – Batteries: Types – primary (dry cell, alkaline cells) and secondary (lead acid, Ni-Cd and Lithium ion batteries) - Supercapacitors – Fuel cells-Hydrogen-Oxygen fuel cell- Solar cells .

Nuclear energy: nuclear fission and fusion –chain reaction and its characteristics – nuclear energy and calculations (problems) – atom bomb –Nuclear reactor- light water nuclear power plant – breeder reactor- Weapon of mass destruction- nuclear, radiological, chemical and biological weapons. Disarmament - National and International Cooperation- Chemical Weapon Convention (CWC), Peaceful Uses of Chemistry. Bio fuels: biomethanation- anaerobic digestion process, biomass: sources and harness of energy.

UNIT V SPECTROSCOPY AND NANOCHEMISTRY

Electromagnetic spectrum - Lambert law and Beer-Lambert's law (derivation and problems) – molecular spectroscopy -UV- visible spectroscopy: electronic transitions - chromophores and auxochromes – instrumentation (block diagram) - applications – IR spectroscopy: principle – fundamental modes of vibrations – calculations of vibrational frequency – IR spectrophotometer instrumentation (block diagram) – applications of IR spectroscopy.

Nanochemistry - Basics - distinction between molecules, nanoparticles and bulk materials; sizedependent properties. Nanoparticles: Nanocluster, nanorod, nanotube and nanowire. Synthesis ; properties and applications of nano materials-Buckminister fullerenes, CNT^{*}S(Single walled carbon nano tubes and Multi-walled carbon tubes)-Graphene- advantages and applications.

TEXT BOOKS

1. Jain and Jain , "A Text book of Engineering Chemistry", Dhanapatrai Publications, New Delhi, 2011.

- 2. Gadag and NityanandaShetty, "Engineering Chemistry", I.K International publishing House Pvt. Ltd, 2010.
- 3. P. Atkins, J.D. Paula, "Physical Chemistry", Oxford University Press, 2009.
- 4. S. S. Dara, S. S. Umare, "A Text Book of Engineering Chemistry", S. Chand Publishing, 2011
- 5. C.P. Poole and F.J. Owens, "Introduction to Nanotechnology", , Wiley, New Delhi ,2007.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

REFERENCE BOOKS

- 1. Puri B R Sharma L R and Madan S Pathania, "Principles of Physical Chemistry", Vishal publishing Co., Edition 2004
- 2. Kuriocose, J C and Rajaram, J, "Engineering Chemistry", Volume I/II, Tata McGraw-Hill Publishing Co. Ltd. New Delhi, 2000

E Resources - MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. http://freevideolectures.com/Course/3001/Chemistry-I
- 5. http://freevideolectures.com/Course/3167/Chemistry-II
- 6. http://ocw.mit.edu/courses/chemistry/

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO1	3	3	3			1	2	1	1	1		2
CO2	2	1	0			1		1	1			1
CO3	3	3	3	2	2	1	2		1	1		1
CO4	3	3	2	2	2	1	2		1	1		1
CO5	2	2	1	1	1	1	1	1	1			1
Total	13	12	9	5	5	5	7	3	5	3		6
Scaled to 0,1,2,3 scale	3	3	2	1	1	1	2	1	1	1		2

Mapping of CO's with GA's:

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ELECTRIC CIRCUIT ANALYSIS

Cours	se Outcomes(PEE 104):	Domain	Level
CO1	Able to <i>define</i> and <i>recall</i> the different	Cognitive	Remembering
	fundamentalelectrical component, Laws and their	Cognitive	Remembering
	applications.		
CO2	<i>Relate</i> the concept of a phasor, and <i>apply</i> phasor	Cognitive	Understanding
	analysismethods to analyze linear circuit operating under	Cognitive	Applying
	sinusoidal steady stateconditions.		
CO3	Able to <i>Solve</i> Thevenin and Norton equivalent circuit of a	Cognitive	Applying
	DC circuitand find the maximum power output using		
	network theorems.		
CO4	Analyse the transient response of a first and second	Cognitive	Analyzing
	ordercircuit consisting of RLC circuit. Design the	Cognitive	Creating
	sinusoidal steady state response of aDC and AC circuit		6
	consisting of RLC components.		
CO5	Create and Measure different electrical parameters in	Cognitive	Creating
	acoupled single phase and three phase circuits.	Cognitive	Evaluating

SUB CODE	SUB NAME	L	Т	Р	С			
PEE 104		3	1	1	5			
C:P:A	ELECTRIC CIRCUIT ANALYSIS	L	Т	Р	Η			
3:0:0		3	2	2	7			
UNIT -I	BASIC CIRCUIT CONCEPTS							
Terminologies and circuit elements (active and passive R,L,&C), ideal sources (independent and								
dependent),	dependent), V-I relationship of circuit elements - AC and DC voltage and current - Ohm's Law and							
Kirchhoff's Laws - Analysis of series and parallel circuits - network reduction: voltage and current								
division, source transformation, star/delta transformation								
UNIT -II	SINUSOIDAL STEADY STATE ANALYSIS			9+9	9+10			
A.C. Fundan	nentals - Concept of phasor and complex Impedance / Admittan	nce - A	nalysi	s of s	imple			
series and p	arallel circuits - active power, reactive power, apparent power	er (vol	t-ampe	ere), p	power			
factor and er	nergy associated with these circuits - resonance in series and part	rallel c	ircuits	- Q f	actor,			
half-power f	requencies and bandwidth of resonant circuits.							
UNIT- IIICIRCUIT ANALYSIS & NETWEORK THEOREMS9 +6+10								
Mesh curren	t analysis - Node-voltage analysis - Super position theorem	- They	enin's	theo	rem -			
Norton's the	Norton's theorem - Reciprocity theorem - Compensation theorem - Tellegen's theorem - Millman's							
theorem - Maximum power transfer theorem								

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

9 + 3 + 10

UNIT- IV TRANSIENT RESPONSE ANDANALYSIS

Source free response of RL and RC circuits - forced (step) response of RL and RC circuits - source free response of RLC series circuit - forced (step) response of RLC series circuit - forced response of RL, RC and RLC series circuit to sinusoidal excitation - Time constant and natural frequency of oscillation of circuits - Laplace Transform application to the solution of RL, RC & RLC circuits.

LINIT V	COUPLED	CIRCUITS,	NETWORKS	AND	THREE	PHASE	0 + 2
UNII-V	CIRCUITS						9 +3

Coupled circuits - Mutual inductance - Coefficient of coupling - dot conversion - Analysis of simple coupled circuits. Network Topology - Two Port Network and its Parameters. Three phase circuits - Three Phase Connections - star/delta.

Lecture = 45; Tutorial = 30; Lab = 30; Total = 105 Hours

ELECTRICAL CIRCUITS LABORATORY

- 1. Verification of Kirchoff's voltage and current laws, Thevenin's and Norton's Theorems.
- 2. Study of oscilloscope and measurement of sinusoidal voltage, frequency and power factor.
- 3. Measurement of time constant of series R-C electric circuits.
- 4. Frequency response of RC and RL circuits.
- 5. Resonant frequency and frequency response of a series RLC circuit.
- 6. Study of the effect of Q on frequency response and bandwidth of series and parallel resonant circuits.
- 7. Study of low pass and high pass filters.
- 8. Measurement of real power, reactive power, power factor and impedance of RC, RL and RLC circuits using voltmeters and ammeters.
- 9. Power measurement in a three-phase circuit by two Wattmeter method.
- 10. Study of first and second order circuit transients by digital simulation.

TEXT BOOKS:

1.	William H.HaytJr, Jack E.Kemmerly, and Steven M.Durbin, "Engineering Circuit Analysis", Tata McGraw-Hill Publishing Co Ltd, New Delhi, 2002
2.	Joseph A.Edminister, MahmoodNahvi, "Electric Circuits", Schaum's Series, Tata McGraw-Hill, New Delhi 2001.
3.	B.R.Gupta and V.Singhal, "Fundamentals of Electric Networks", S.Chand & Co., New Delhi, 2006.
4.	A.Chakrabarti, "Circuit Theory (Analysis and Synthesis)", Dhanapatrai Publications, 2010.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

REFEREN	CE BOOKS:
1.	R.C. Dorf, "Introduction to Electric Circuits" John Wiley & Sons Inc, New York, Second Edition, 2010
2.	Charles K.Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuit", McGraw-Hill, N.Y, 2003.
3.	Van Valkenberg M.E, "Network Analysis", PHI Publications, 3 rd Edition, New Delhi, 2006.
4.	Bell D A, "Fundamentals of Electric Circuits", Reston, USA
E-REFERI	ENCES:
1.	NPTEL :http://nptel.ac.in/courses/108102042/
2.	MOODLE : http://moodle.cecs.pdx.edu/course/view.php?id=16

CO/ PO/ PSO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	-	-	2	1	1	2	-	-	1	-	-	1	1
CO2	3	3	-	3	3	3	-	3	-	1	3	-	1	1
CO3	2	-	-	-	2	2	2	3	-	-	-	-	2	2
CO4	-	1	3	-	-	1	-	-	1	-	-	-	2	2
CO5	-	-	1	-	3	-	-	2	-	-	-	-	1	2
Total	7	4	4	5	9	7	4	8	1	2	3	5	7	8
Scaling	2	1	1	1	2	2	1	2	1	1	1	1	2	2

COs versus PO, PSO mapping

0 -No relation 1 - Low relation 2 - Medium relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

CALCULUS AND LAPLACE TRANSFORMS

Cours	se Outcomes(PMA 201):	Domain	Level
CO1	<i>Use</i> standard results to <i>estimate</i> the Laplace transforms of	Cognitive	Creating
	derivatives and integrals and to <i>solve</i> differential equations.		
CO2	Apply multiple integral concepts todetermine area, volume	Cognitive	Applying
	and to understand the order of integration.		
CO3	Define the gradient, divergent curl of vectors. Compute	Cognitive	Applying
	directional derivative, unit vector normal to the surface.		
	Apply corresponding theorems to find theline, surface and		
	Volume integrals.		
CO4	Construct and examine the analytic functions, and their the	Cognitive	Creating
	complexConjugate and to Explain the concept of		Applying
	conformal mapping and itsConstruction bilinear		
	transformation.		
CO5	Compute the poles, singularities and residues of functions	Cognitive	Creating
	andto solve the problems using contour integration.		Applying

SUBCODE	SUB NAME	L	Т	P	С
PMA 201	CALCULUS AND LAPLACE TRANSFORMS	3	1	0	4
C:P:A = 3:0:0					
		L	Т	Р	H
		3	2	0	5
UNITI LAPLAC	TRANSFORMS			l	15

Transforms of elementary functions – properties – derivatives and integrals of transforms-Transforms of derivatives and integrals - Transforms of unit step function and impulse function - Transform of periodic functions – Convolution Theorem – Inverse transforms – Solutions of differential and integral equations.

UNIT IIMULTIPLE INTEGRALS15Double integration – Cartesian and polar coordinates – change of order of integration - areaas a double integral – change of variables between Cartesian and polar coordinates - tripleintegration-- Simple applications (Finding area & volume of a certain region).

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

15

15

NAAC ACCREDITED

UNIT IIIVECTOR CALCULUS

Gradient, divergence and curl - directional derivative – normal and tangent to a given surface – angle between two surfaces – irrotational and solenoidal vector fields - Line, Surface and Volume Integral – Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proof).

UNIT IV ANALYTIC FUNCTIONS

Function of a complex variable – analytic function – necessary and sufficient condition (excluding proof) – Cauchy Riemann equations – properties of analytic functions - harmonic

conjugate - construction of an analytic function – Conformal mapping: w = z + c, cz, $\frac{1}{z}$, sinz,

coshz, $z + \frac{k^2}{z}$ - Bilinear transformation.

UNIT VCOMPLEX INTEGRATION

Statement and application of Cauchy's integral theorem and integral formula - Taylor's and Laurent's expansion - Residues – Cauchy's Residue Theorem - Contour integration over unit circle.

LECTURE	TUTORIAL	TOTAL
45	30	75

TEXT BOOKS

- 1. Grewal, B.S. Higher Engineering Mathematics, 41st Edition, Khanna Publication, Delhi, 2011.
- 2. Kreyszig, E, Advanced Engineering Mathematics, Eighth Edition, John Wiley and Son(Asia) Ltd, Singapore, 2001.

REFERENCE BOOKS

- 1. Bali N.P and Narayana lyengar, Engineering Mathematics, Laxmi Publications (P) Ltd, New Delhi, 2003.
- 2. Veerarajan T, Engineering Mathematics Fourth Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2005.
- 3. Kandasamy P., Thilagavathy K, and Gunavathy K, Engineering Mathematics Volume I, II and III, S. Chand & Co, New Delhi, 2005.
- 4. Venkataraman M. K, Engineering Mathematics, Volume I and II Revised enlarge Fourth Edition, The National Publishing Company, Chennai, 2004.

E REFERENCES

www.nptel.ac.in

1. Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

15

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

COs versus GAs mapping

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3											1
CO 2	3											1
CO 3	3	2								1	1	2
CO 4	3	2			1					1	1	1
CO 5	3	2			1					1	1	1
	15	6	0	0	2	0	0	0	0	3	3	6

0 -No relation 1 - Low relation 2 - Medium relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ELECTROMAGNETIC FIELD THEORY

Cours	se Outcomes(PEE 202):	Domain	Level
CO1	List and classify the spatial variations of physical	Cognitive	Remembering
	quantities by various coordinate systems using stokes and		Understanding
	divergence theorem.		
CO2	Define the knowledge of electrostatics using gauss and	Cognitive	Remembering
	Coulombs law and their applications and Explain		Understanding
	boundary conditions, poissons, laplace equation.		
CO3	Recall and outline the magnetic field configuration using	Cognitive	Remembering
	amperes Law, biot-savarts law,Lorentz law and boundary		Understanding
	conditions.		
CO4	State and Explain electromagnetic fields generated by	Cognitive	Remembering
	dynamic charge distributions using Maxwell's equation		Understanding
	and faradays law		
CO5	Define and outline Electromagnetic wave propagation in	Cognitive	Remembering
	different media.		Understanding

SUB	SUB NAME	L	Т	Р	С		
CODE							
PEE		3	1	0	4		
202	ELECTROMAGNETIC FIELD THEORY						
C:P:A		L	Т	P	Η		
2:0:0		3	1	0	4		
UNIT- I	INTRODUCTION		09-	+5			
Sources and e	effects of electromagnetic fields - Vector fields - Different co-ordin	nate s	syster	ns (l	orief		
description onl	description only) - Divergence theorem - Stoke's theorem.						
UNIT- II	ELECTROSTATICS		09-	+5			
Coulomb's Law - Electric field intensity - Field due to point and continuous charges - Gauss's law and							
application - I	application - Electrical potential - Electric field and equipotential plots - Electric field in free space,						
conductors, die	electric - Dielectric polarization, Electric field in multiple dielectrics - b	ounda	ry co	nditi	ons,		
Poisson's and	Laplace's equation, Capacitance-energy density – Dielectric strength						
UNIT- III	MAGNETOSTATICS		09-	+5			
Lorentz Law	of force, magnetic field intensity-permeability - Biot-savart's Law	- Am	pere'	's La	ιw -		
Magnetic field	l due to straight conductors, solenoid - Magnetic flux density (B)	- B i	in fre	e sp	ace,		
conductor, Ma	gnetic materials - Magnetization - Boundary conditions - Scalar and	1 vect	tor po	otent	ial -		
Magnetic force	Magnetic force - Torque - Inductance - Energy density - Magnetic circuits-permanent magnets.						
UNIT- IV	NIT- IVELECTRODYNAMICS FIEL09+5						
Faraday's law	of induced emf, -Transformer and motional EMF, Maxwell's equation	ns (d	iffere	ntial	and		
integral forms)	integral forms) - Conduction current, Displacement current - Relation between field theory and circuit						
theory.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

NAAC ACCREDITED

UNIT	- V	ELECTROMAGNETIC WAVES			0	9+5			
Generati	on –	Electro Magnetic Wave equations -Wave par	ameters; velo	city, in	trinsic i	impedance,			
propagat	ion co	onstant – Waves in free space, loss and lossless die	electrics, condu	ictors-sk	kin deptl	n, Poynting			
vector -	Plane	wave reflection and refraction.							
			LECTURE	TUTO	RIAL	TOTAL			
			45	1	5	60			
TEXT B	BOOK	S:							
1.	John	D.Kraus, 'Electromagnetics', McGraw Hill book	Co., New Yorl	k, Fourtl	h Edition	n, 2002.			
2.	Willi	William. H.Hayt, 'Engineering Electromagnetics', Tata McGraw Hill edition, 2001.							
3	Josep	Joseph. A.Edminister, 'Theory and Problems of Electromagnetics', Second edition, Schaum							
5.	S. Series, Tata McGraw Hill, 1993.								
REFER	REFERENCE BOOKS:								
1	D.Sa	thaiah-M.Anitha, 'Electro magnetic fields' Firs	st edition-2007	7, SCIT	ЕСН р	ublications			
1.	(Indi	a) Pvt Ltd., Chennai							
2.	I.J. N Edi	Nagrath, D.P. Kothari, 'Electric Machines', Tata Mation, 2000.	McGraw Hill I	Publishi	ng Co L	td, Second			
3.	Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 1999.								
4.	Sadiku, 'Elements of Electromagnetics', Second edition, Oxford University Press, 2001.								
E REFE	RENC	ES:							
1.	NPT	EL - Electromagnetic Fields, Prof. Harishankar Ra	amachandran,	IIT Mac	lras				
2.	NPT	EL - Electromagnetic Fields, Prof. Prof. Ravindra	Arora , IIT Ka	npur.					

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu

Web: www. pmu.edu

NAAC ACCREDITED COs versus PO, PSO mapping

CO/ PO/PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	3	-	1	-	1	1	-	-	1	-	1	1	1
CO2	2	3	-	2	-	1	-	-	-	-	-	-	1	1
CO3	2	3	-	-	-	1	1	1	-	-	-	1	-	2
CO4	2	2	-	-	-	1	-	-	1	-	-	-	1	2
CO5	2	2	1	-	-	-	-	2	-	-	-	1	1	1
Total	10	13	1	3	0	4	2	3	1	1	0	3	4	7
Scaling	2	3	1	1	0	1	1	1	1	1	0	1	1	2

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ELECTRONIC DEVICES AND CIRCUITS

Cours	se Outcomes(PEE 203):	Domain	Level
CO1	Classify and explain semiconductor devices and show	Cognitive	Understanding
	theinput output characteristics of basic semiconductor		Understanding
	devices.		
CO2	<i>Explain</i> the construction, working and their characteristics	Cognitive	Understanding
	of different types oftransistors.		
CO3	<i>Classify</i> the differenttypes of amplifiers and	Cognitive	Understanding
	design procedure of amplifiers and show the frequency		Creating
	response of an amplifier	Psychomotor	Set
CO4	Classify the different types of amplifiers and show the	Cognitive	Understanding
	designprocedure of amplifiers.	Psychomotor	Set
CO5	<i>Explain</i> the feedback amplifiers and oscillators.	Cognitive	Understanding

SUB CODE	SUB NAME	L	Т	Р	С			
PEE 203		3	1	0	4			
C:P:A	ELECTRONIC DEVICES AND CIRCUITS	L	Т	Р	Н			
3:1:0		3	1	0	4			
UNIT- II PN JUNCTION DEVICES								
PN junction	PN junction diode -structure, operation and V-I characteristics, diffusion and transient capacitance -							
Rectifiers -	Rectifiers - Half Wave and Full Wave Rectifier, - Display devices- LED, Laser diodes- Zener diode							
characteristics-Zener Reverse characteristics – Zener as regulator								
UNIT- II	UNIT- II TRANSISTORS							
BJT, JFET,	MOSFET- structure, operation, characteristics and Biasing U	JJT, Th	yristor	and IG	BT -			
Structure an	d characteristics.							
UNIT- III	AMPLIFIERS			9 +	- 5			
BJT small s	gnal model – Analysis of CE, CB, CC amplifiers- Gain and freq	luency 1	espons	e –MOS	SFET			
small signa	l model- Analysis of CS and Source follower - Gain and	frequer	ncy resp	ponse-	High			
frequency and	nalysis.							
UNIT- IV	MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AM	IPLIFI	ER	9 +	- 5			
BIMOS cas	cade amplifier, Differential amplifier - Common mode and I	Differen	ce mod	e analy	vsis –			
FET input s	FET input stages - Single tuned amplifiers - Gain and frequency response - Neutralization methods,							
power amplifiers – Types (Qualitative analysis).								
UNIT- V	UNIT- VFEEDBACK AMPLIFIERS AND OSCILLATORS9+3							
Advantages	of negative feedback - voltage / current, series , Shunt feed	back –	positive	feedba	ack –			
Condition for	Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

		Lecture	Tutorial	Lab	Total			
		45	30	0	75			
TEXT B	OOKS:							
1.	1. Jacob. Millman, Christos C.Halkias, 'Electronic Devices and Circuits', Tata McGraw Hill Publishing Limited, New Delhi, 2003.							
2.	David A.Bell, 'Electronic Devices and Circuits', Pren Delhi, 2003.	ntice Hall of	f India Priva	te Limite	ed, New			
3.	Principle of Electronics by V.K. Mehta, S.Chand							
4.	Theodre. F. Boghert, 'Electronic Devices & Circuits', Pearson Education, VI Edition, 2003.							
5.	Sedra and Smith, "Microelectronic circuits", Prentice	e Hall of Inc	lia, 2004.					
REFER	ENCE BOOKS:							
1.	Floyd, "Electronic Devices" Pearson Asia 5 th edition	2001.						
2.	Ben G. Streetman and Sanjay Banerjee, 'Solid State 2002 / PHI	Electronic l	Devices', Pe	earson Ec	lucation,			
3.	Allen Mottershead, 'Electronic Devices and Circuits - Hall of India Private Limited, New Delhi, 2003.	– An Introd	uction', Pr	entice				
4.	Electronic Devices and Circuits by Salivahanan – mited.	Tata Mcgr	aw – Hill I	Education	n private			
5.	Rashid, "Microelectronic circuits" Thomson Publicat	ion, 2000.						
E-REFE	RENCES:							
1.	NPTEL, Electronic Devices and Circuits, Prof. T.S.	Natarajan ,I	IT Madras					
2.	NPTEL, Electronic Devices and Circuits, Dr.S. Karn	nalkar , IIT	Madras					

COs versus POs mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	2	2	-	-	1	1	1	1	-	-	1	2	1
CO 2	2	3	3	-	-	1	0	1	-	-	-	2	2	1
CO 3	1	3	2	-	-	2	1	2	-	1	-	2	1	2
CO 4	2	2	2	-	-	1	2	1	1	-	1	1	1	2
CO 5	2	2	2	-	-	0	1	2	1	1	1	2	2	1
Total	10	12	11	-	-	5	5	7	3	2	2	8	8	7
Scaling	2	3	3	0	0	1	1	2	1	1	1	2	2	2

0 – No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ELECTRICAL MACHINES - I

Cours	se Outcomes(PEE 204):	Domain	Level
CO1	Inferthe fundamentals concepts of rotating machine.	Cognitive	Understanding
CO2	List the parts of the DC machines and carry out	Cognitive	Remembering
	the complete discussion about armature reaction and	Psychomotor	COR
	characteristic.		
CO3	<i>Define</i> the principle of operation of DC motor and uses of	Cognitive	Remembering
	startershow the speed control.	Psychomotor	Set
CO4	Illustrate the transformer construction and operation,	Cognitive	Understanding
	equivalent circuit and load condition. List the special type	Cognitive	Understanding
	transformer.		
CO5	<i>Recall</i> the knowledge in the testing of d.c. machinesand	Cognitive	Remembering
	transformer. <i>Show</i> theperformance of machines like losses	Psychomotor	Perception
	andefficiency.		

SUB CODE	SUB NAME	L	Т	Р	С		
PEE 204		3	1	1	5		
C:P:A	ELECTRICAL MACHINES I	L	Т	Р	Н		
3:1:0		3	2	2	7		
UNIT- I	BASIC CONCEPTS OF ROTATING MACHINES \$						
Principles of electromechanical energy conversion - Energy in Magnetic System Field energy co- energy - Single and multiple excited systems - M.M.F of distributed A.C. windings - Rotating magnetic field - Magnetic saturation and leakage flux - Generated voltage							
UNIT-II	DC GENERATORS			10+8	8+12		
Constructio Winding - Armature re Parallel ope	Constructional details and components of D.C machine - Principles of Operation - Lap and Wave Winding - EMF equation - Methods of excitation - Self and separately excited generators - Armature reaction and commutation - Characteristics of series, shunt and compound generators - Parallel operation of DC shunt and compound generators.						
UNIT-III	DC MOTORS			8+	6+6		
Principles of operation - Types of D.C motors - Back EMF-Torque equation - Characteristics of series, shunt and compound motors - Speed control of DC series and shunt motors - Starting of DC motors - Types of starters.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY UNIVERSITY

NAAC ACCREDITED

UNIT- IV TRANSFORMERS

Constructional details of core and shell type transformers - Types of windings - Principle of operation - EMF equation - Transformation ratio - Transformer on no-load - Parameters referred to HV / LV windings - Equivalent circuit - Transformer on load - Regulation and Efficiency - Parallel operation of single phase transformers - Auto transformer - Three phase transformers.

UNIT-V TESTING OF DC MACHINES AND TRANSFORMERS

9+6+6

10 + 8 + 6

Losses and efficiency in DC machines and transformers - Condition for maximum efficiency - Testing of DC machines - Brake test, Swinburne's test, Retardation test and Hopkinson's test - Testing of transformers - open circuit and short circuit tests - All day efficiency.

- 1. Study of D.C. Motor Starters.
- 2. Open Circuit Characteristics (OCC) and load Characteristics of D.C self-excited generator.
- 3. Load characteristics of D.C shunt generator
- 4. Load characteristics of D.C. shuntmotor.
- 5. Load characteristics of D.C series motor.
- 6. Speed control of D.C shunt motor.
- 7. Load test on single-phase transformer.
- 8. Open circuit and short circuit tests on single phase transformer.

Lecture = 45; Tutorial = 30; Lab = 30; Total = 105 Hours

TEXT BOO	DKS:
1.	D.P. Kothari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing
	Company Ltd, 2002.
2.	P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
3.	B.L.Theraja, "A Textbook of Electrical Technology "Vol. I&II, M/s S.Chand,
	Delhi,2013
REFEREN	CE BOOKS:
1.	A.E. Fitzgerald, Charles Kingsley, Stephen D.Umans, 'Electric Machinery', Tata
	McGraw Hill publishing Company Ltd, 2003.
2	J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons,
۷.	2002.
3	P.C. Sen, "Principles of Electrical Machines and Power Electronics" John Wiley &
5.	Sons, 1997.
4.	DeshPande M.V., "Electrical Machines" PHI Learning Pvt Ltd., New Delhi – 2011.
E-REFERE	INCES:
1	NTPEL, Electrical Machines (Web Course), Prof. N. K. De, Prof. T. K. Bhattacharya
1.	and Prof. G. D. Roy, IIT Kharagpur.
2	http://freevideolectures.com/Course/2335/Basic-Electrical-Technology/22-
2.	27Prof.L.Umanand, IISc Bangalore.
3.	http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus POs mapping

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	2	1	-	-	-	1	-	-	1	-	1
CO2	3	2	-	2	1	-	-	-	-	-	-	1	-	1
CO3	3	-	-	-	1	-	-	-	1	-	-	1	-	1
CO4	3	2	2	2	1	-	-	-	1	-	-	1	-	1
CO5	3	-	-	-	1	-	-	-	-	-	-	1	-	1
Total	15	6	4	6	5				3			5		5
Scaling	3	2	1	2	1				1			1		1
Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

9

9

9

NAAC ACCREDITED

POWER PLANT ENGINEERING

Cours	se Outcomes(PEE 301):	Domain	Level
CO1	<i>Explain</i> about the various types of the power generation and function of boilers	Cognitive	Understanding
CO2	Choose Various Measurements in power plants.	Cognitive	Remembering
CO3	<i>Illustrate</i> Various <i>analyzers</i> in power plants, and <i>identify</i> the pollution monitoring instruments.	Cognitive	Understanding Applying
CO4	<i>Infer</i> all control loops in boiler , and interlocks in boiler operation-boiler trip protection.	Cognitive	Understanding
CO5	<i>Explain</i> about turbine speed vibration – lubricant oil temperature control – cooling system and <i>select</i> the SCADA and other monitoring and control software	Cognitive	Understanding Remembering

SUB CODE	SUB NAME	L	Т	Р	С
PEE 301		3	0	0	3
C:P:A	POWER PLANT ENGINEERING	L	Т	Р	Н
3:0:0		3	0	0	3
UNIT- I	OVERVIEW OF POWER GENERATION				9

Principle of Power Generation, Brief survey of methods of power generation – hydro, thermal, nuclear, solar, wind and tidal power – importance of instrumentation in power generation– Material handling of power plant equipment thermal power plants – building blocks – details of boiler processes UP&I diagram of boiler – cogeneration.

UNIT- II | MEASUREMENTS IN POWER PLANTS

Electrical measurements – current, voltage, power, frequency, power – factor etc. – non electrical parameters – flow of feed water, fuel, air and steam with correction factor for temperature – steam pressure and steam temperature – drum level measurement – radiation detector – smoke density measurement – dust monitor-emission measurements-performance measurements.

UNIT-III ANALYZERS IN POWER PLANTS

Flue gas oxygen analyzer – Deminaral - Steam and Water Analysis System (SWAT) analysis of impurities in feed water and steam – dissolved oxygen analyzer – chromatography – PH meter – fuel analyzer – pollution monitoring instruments

UNIT-IV CONTROL LOOPS IN BOILER

Combustion control – air/fuel ratio control – furnace draft control – drum level control –low and high protection- main steam and reheat steam temperature control – super heater control – at temperature – deaerator level control – distributed control system in power plants – interlocks in boiler operation-boiler trip protection

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

9

NAAC ACCREDITED

UNIT- V TURBINE – MONITORING AND CONTROL SOFTWARE

Speed, vibration, shell temperature monitoring and control – steam pressure control – lubricant oil temperature control – cooling system and application of SCADA and other monitoring and control software .

Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours

ТЕХ	T BOOKS:								
1.	Sam G. Dukelow, "The control of Boilers" Instrument Society of America, 2000.								
2.	V.K. Mehta and Rohit Mehta "Principles of Power system" S. Chand & Company, New Delhi, 2003								
3.	Er. R.K. Rajput, A text book of power plant engineering, Forth edition, 2015.								
4.	Dr. P. C. Sharma's A Textbook of Power Plant Engineering, published by S. K. Kataria, 2013.								
REF	REFERENCE BOOKS:								
1.	Power station Engineering and Economy by Bernhardt G.A.Skrotzki and William A.Vopat- Tata McGraw Hill Publishing Company Ltd., New Delhi, 20th reprint 2002								
2.	R.K.Jain, "Mechanical and Industrial Measurements" Khanna Publishers, New Delhi, 2002.								
3.	Arora Domkundwar, A course in Power Plant engineering, Dhanpat Rai & Co,2001								
E-RI	EFERENCES:								
1	www.electrical4u.com								

COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	2	2	1	-	-	-	1	-	-	1	3	2
CO2	3	1	-	2	1	-	-	-	1	-	-	1	1	2
CO3	3	-	1	-	1	-	-	-	1	-	-	1	2	1
CO4	3	2	2	2	1	-	-	-	1	-	-	1	3	1
CO5	3	1	-	-	1	-	-	-	-	-	-	1	2	1
Total	15	6	4	6	5				4			5	11	7
Scaling	3	2	1	2	1				1			1	3	2

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ENTREPRENEURSHIP DEVELOPMENT

Cours	se Outcomes(PSC 302):	Domain	Level
CO1	<i>Recognise</i> and <i>describe</i> the personal traits of an	Affective	Receiving
	entrepreneur.	Cognitive	Understanding
CO2	Determine the new venture ideas and analyse the	Cognitive	Evaluating
	feasibility report.		Analyzing
CO3	Develop the business plan and analyse the plan as an	Cognitive	Applying
	individual or in team.		Analyzing
CO4	Describe various parameters to be taken into consideration	Cognitive	Understanding
	for launching and managing small business.		
CO5	Describe Technological management and Intellectual	Cognitive	Understanding
	Property Rights		

COURSE CODE	COURSE NAME	L	Т	Р	С						
PSC 302	ENTREPRENEURSHIP DEVELOPMENT	2	0	0	2						
C:P:A = 3:0:1			-	-	-						
		L	Т	Р	Η						
		2	0	0	2						
UNIT- IENTREPI	RENEURIAL TRAITS AND FUNCTIONS	i		(5						
Definition of Entr	Definition of Entrepreneurship; competencies and traits of an entrepreneur: factors affecting										
Entrepreneurship I	Entrepreneurship Development: Role of Family and Society : Achievement Motivation:										
Entrepreneurship as a career and national development;											
UNIT -II NEW PRODUCT DEVELOPMENT AND VENTURE CREATION											
Ideation to Concept development: Sources and Criteria for Selection of Product: market											
assessment : Feasil	bility Report : Project Profile: processes involved in starting a	i nev	N V	entu	ire:						
legal formalities; O	wnership: Case Study.				,						
UNIT –III ENTR	EPRENEURIAL FINANCE			(5						
Financial forecasti	ng for a new venture: Finance mobilization: Business pla	n pi	ena	rati	on:						
Sources of Financi	ing Angel Investors and Venture Capital: Government supp	ort i	n	star	tun						
promotion	ing, imger myesters and venture cupitar, coveriment supp	010 1		5	ччр						
UNIT -IV LAUNO	CHING OF SMALL BUSINESS AND ITS MANGEMENT			6	6						
Operations Plannin	g - Market and Channel Selection - Growth Strategies - Produc	ot I s	um	hin	σ						
Insubation Monito	ring and Evolution of Pusiness Proventing Sickness and Re	JL La	ilito	tion	g –						
neubation, womoning and Evaluation of Dusiness - Preventing Sickness and Renabilitation of											
Business Units.											

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT –V TECHNOLOGY MANAGEMENT, IPR PORTFOLIO FOR NEW 6 PRODUCT VENTURE

Technology management; Impact of technology on society and business; Role of Government in supporting Technology Development and IPR protection; Entrepreneurship Development Training and Other Support Services.

LECTURE	TUTORIAL	TOTAL
30	0	30

TEXT BOOKS

- 1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.
- 2. S.S.Khanka, 2013, *Entrepreneurial Development*, S.Chand and Company Limited, New Delhi.

REFERENCE BOOKS

- 1. Mathew Manimala, 2005, Entrepreneurship *Theory at the Crossroads, Paradigms & Praxis*, Biztrantra ,2nd Edition.
- 2. Prasanna Chandra, 2009, *Projects Planning, Analysis, Selection, Implementation and Reviews*, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, *Entrepreneurial Development*, Ess Pee kay Publishing House, Chennai.
- 4. Arya Kumar,2012, *Entrepreneurship: Creating and Leading an Entrepreneurial Organisation*, Pearson Education India.
- 5. Donald F Kuratko, T.V Rao, 2012, *Entrepreneurship: A South Asian perspective*, Cengage Learning India.
- 6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material
 - **a.** for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad. Available from: http://www.ediindia.org/doc/EDP-TEDP.pdf

E RESOURCES

- 1. Jeff Hawkins, " Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

MAPPING COURSE OUTCOME WITH GRADUATE ATTRIBUTES:

	GA	GA1	GA1	GA1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO1									3	3	3	1
CO2			1	2	3	2	1	1	1	2	3	
CO3						1		2	3	3		2
CO4						1	1	2	3		3	3
CO5						1	1	3				3
			1	2	3	5	3	8	10	8	9	9
			1	1	1	2	1	2	3	2	2	2

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

ELECTRICAL ENERGY UTILIZATION AND CONSERVATION

Cours	se Outcomes(PEE303):	Domain	Level		
CO1	Choose an industrial drive with relevant factors and	Cognitive	Remembering		
	<i>develop</i> electric traction system.		Applying		
CO2	Classify the lamps and lighting. Develop lighting scheme	Cognitive	Understanding		
	for residential, commercial and industrial applications.		Applying		
CO3	<i>Explain</i> electric heating and <i>develop a</i> heating system.	Cognitive	Understanding		
			Applying		
CO4	Demonstrate the furnaces, welding and identify their	Cognitive	Understanding		
	applications.				
CO5	<i>Explain</i> the application of electrolytic process and electroplating.	Cognitive	Understanding		
		1			

SUBCO DE	SUB NAME	L	Τ	Р	С
PEE303 C:P:A	ELECTRICAL ENERGY UTILIZATION AND CONSERVATION	3 L	1 T	0 P	4 H
3:0:0		3	1	0	4

UNIT IELECTRIC DRIVES AND TRACTION10+5Fundamentals of electric drive - choice of an electric motor - application of motors for
particular services - traction motors - characteristic features of traction motor - systems of
railway electrification - electric braking - train movement and energy consumption - traction
motor control - track equipment and collection gear.

UNIT IIELECTRIC LIGHTING08+5Definition of terms – types of lamp – types of lighting –Lighting Scheme, methods of lighting
calculation design of illumination – residential – commercial – industrial – energy saving
measures.savingUNIT IIIHEATING AND WELDING09+5Advantages of electric heating – Models fo heat transfer – Methids of heating: Resistance

Advantages of electric heating – Models to heat transfer – Methids of heating: Resistance heating, Induction heating, Dielectric heating – Requirement of heating material – design of heating element. Furnaces: Induction furnace, Arc furnace – Welding types: Resistance, Electric Arc, Welding generator, Welding transformer and its characteristics – plasma cutting.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY UNDEr Sec. 3 of UGC Act, 1956

NAAC ACCREDITED

UN	INIT IV ELECTRO-CHEMICAL PROCESSES 09+5										
Electrolysis – Electroplating – Electro deposition – Extraction of metals – Current, Efficiency											
- Ba	tteries – types – Charging Methods.										
TINT				00.5							
UNIT V ENERGY CONSERVATION AND AUDIT 09+5											
I ari	II – Need for electrical energy conservation	– ways of er	iergy conservati	on. Energy							
Aud	liting: Aim, Strategy, Periodic process revie	ew, energy au	dit of electrica	l system –							
Inst	ruments for energy audit – Demand side manag	gement: Plannir	ng and implemer	itation, load							
man	agement, End use energy conservation.										
		LECTURE	TUTORIAL	TOTAL							
		60	00	45							
TE	XT BOOKS:										
1.	Wadhwa, C.L., 'Generation, Distribution an	d Utilization o	f electric energy	y, New age							
	International Publications, 2006.										
2.	B. R. Gupta, "Generation of Electrical En	ergy", Eurasia	Publishing Ho	use Private							
	Limited, New Delhi, 2003.		-								
RE	FERENCE BOOKS:										
1.	S. L Uppal, "Electrical Power", Khanna Publ	ishers, 1988.									
2.	Suryanarayana, N.V., 'Utilisation of Electric	Power', Wiley	Eastern Ltd. 199	3.							
ER	EFERENCES										
1.	http://nptel.ac.in/courses/108105058/ Prof. S. E	Banerjee, IIT –	Kharagpur.								
2.	https://www.youtube.com/watch?v=uy9lZCdk0	QIM Prof.D.P.H	Kothari, IIT Del	hi							

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Email: headeee@pmu.edu Fax: + 91- 4362 - 264660 Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	-	-	1	-	1	-	-	-	1	-
CO2	-	-	3	-	-	-	2	2	-	-	2	2	1	-
CO3	-	-	3	-	-	3	3	-	-	-	-	-	3	1
CO4	1	2	-	3		-	2	-	-	2	-	-	2	1
CO5	1	1	-	3	2	-	-	-	-	-	-	-	1	-
Total	4	5	7	6	2	3	8	2	1	2	2	2	8	2
Scaling	1	1	2	2	1	1	2	1	1	1	1	1	2	1

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

ELECTRICAL MACHINES II

Cours	se Outcomes(PEE 304):	Domain	Level
CO1	<i>Explain</i> the fundamentals concepts of alternator and <i>name</i>	Cognitive	Understanding
	the types of alternator. <i>Demonstrate</i> complete working of		Remembering
	alternator and voltageregulation.	Psychomotor	Set
CO2	Summarise the fundamentals concepts of synchronous	Cognitive	Understanding
	motor and perform the starting, different torque and	Psychomotor	COR
	performance characteristics.		
CO3	Define the operation of induction motor, equivalent	Cognitive	Remembering
	circuitand slip – torque characteristic. <i>Show</i> the testing and	Psychomotor	Set
	performance of an inductionmotor.		
CO4	<i>Classify</i> the types of starters of induction motor and <i>List</i> the	Cognitive	Understanding
	different methods of speed control.	Cognitive	Remembering
CO5	Define the concept of single phase induction motorand	Cognitive	Remembering
	special machines. <i>Perform</i> the test like no load and	Psychomotor	COR
	blocked load test of single phase induction motor.	-	

GUID											
SUB	SUB NAME	T	т	р	С						
CODE	SOD NAME	Ľ	I	1	C						
PEE 304		1	5								
C:P:A	ELECTRICAL MACHINES II L T										
3:0:0		3	2	2	7						
UNIT-1	NIT-1 SYNCHRONOUS GENERATOR										
Constructio	Constructional details – Types of rotors – Winding Factors– EMF equation – Synchronous reactance										
– Armature reaction – Voltage regulation – E.M.F, M.M.F and Z.P.F methods – Synchronizing and											
parallel operation – Synchronizing torque.											
UNIT- IISYNCHRONOUS MOTOR9+2+2											
Principle of operation – Torque equation – Operation on infinite bus bars - V-curves – Power input											
and power of	developed equations - Starting methods - Current loci for consta	nt pow	ver inp	ut, co	nstant						
excitation a	nd constant power developed – Handing and Damper Winding.										
UNIT-III	THREE PHASE INDUCTION MOTOR (IM)			10+8	8+8						
Constructio	nal details – Types of rotors – Principle of operation – Slip – (Coggin	g and	Craw	ling -						
Equivalent	circuit - Slip-torque characteristics - Condition for maximum	n torq	ue –	Losse	s and						
efficiency -	- Load test - No load and blocked rotor tests - Double cage rotors	•									
UNIT- IV	STARTING AND SPEED CONTROL OF THREE PHASE	IM		7+2-	-2						
Need for st	arting – Types of starters – DOL Stator resistance, rotor resistar	nce, au	totrans	forme	er and						
star-delta st	arters - Speed control - Change of voltage, frequency, number	of pol	es and	slip -	– V/F						
Control.		-		-							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

UNIT- V SINGLE PHASE IM AND SPECIAL MACHINES

9+6+6

Constructional details of single phase induction motor – Double revolving field theory and operation – Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of single-phase induction motors - Special machines - Shaded pole induction motor, reluctance motor, repulsion motor, hysteresis motor. A.C series motor, Stepper Motor – Introduction to Magnetic Levitation Systems.

- 1. OCC and Load Characteristics of three-phase alternator.
- 2. Regulation of three phase alternator by EMF /MMF methods.
- 3. Load test of a three phase alternator
- 4. V and Inverted V curves of Three Phase Synchronous Motor.
- 5. Load test on three-phase Squirrel Cage Induction motor.
- 6. Load test on Three-Phase Slip Ring Induction motor.
- 7. No load and blocked rotor test on three-phase induction motor.
- 8. Load test on single-phase induction motor
- 9. No load and blocked rotor test on single-phase induction motor.
- 10. Study of Induction motor starters

Lecture = 45; Tutorial = 30; Lab = 30; Total = 105 Hours

TEXT BOOKS:

	books.
1.	D.P. Kothari and I.J. Nagrath, 'Electric Machines', Tata McGraw Hill Publishing Company Ltd, 2002.
2.	P.S. Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003.
3.	B.L.Theraja, "A Textbook of Electrical Technology,"Vol. I&II, M/s S.Chand, Delhi,2013
REFE	RENCE BOOKS:
1.	A.E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, 'Electric Machinery', Tata McGraw Hill publishing Company Ltd, 2003.
2.	J.B. Gupta, 'Theory and Performance of Electrical Machines', S.K.Kataria and Sons, 2002.
3.	P.C. Sen, "Principles of Electrical Machines and Power Electronics" John Wiley & Sons, 1997.
4.	DeshPande M.V., "Electrical Machines" PHI Learning Pvt Ltd., New Delhi – 2011.
5.	A. G. Warren, "Problems in Electrical Engineering", Parker and Smith Solutions, Newyork, 1940.
6.	K. Murugesh Kumar, 'Electric Machines', Vikas publishing house Pvt Ltd, 2002.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E-REFERENCES: 1. http://freevideolectures.com/Course/2335/Basic-Electrical-Technology35-38,Prof.L.Umanand,IISc Bangalore.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	2	1	-	-	-	1	-	-	1	-	1
CO2	3	2	-	2	1	-	-	-	-	-	-	1	-	1
CO3	3	-	-	-	1	-	-	-	1	-	-	1	-	1
CO4	3	2	2	2	1	-	-	-	1	-	-	1	-	1
CO5	3	-	-	-	1	-	-	-	-	-	-	1	-	1
Total	15	6	4	6	5				3			5		5
Scaling	3	2	1	2	1				1			1		1

COs versus POs mapping

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY

NAAC ACCREDITED

TRANSMISSION AND DISTRIBUTION OF ELECTRIC POWER

Cours	se Outcomes(PEE 401):	Domain	Level
CO1	<i>Explain</i> the major components of Transmission and Distribution Systems (TDS). <i>Classify</i> different types of single and three phase transmission line parameters.	Cognitive	Understanding Understanding
CO2	<i>Outline</i> the types of transmission line efficiency calculations and its performance	Cognitive	Understanding
CO3	<i>Explain</i> the different types of insulators and <i>solve</i> for stress and sag in overhead lines.	Cognitive	Understanding Applying
CO4	Interpret different types underground cables.	Cognitive	Understanding
CO5	<i>Summarize</i> the latest technologies in the field of distribution systems.	Cognitive	Understanding

SUBCODE	SUB NAME	L	Т	Р	С						
PEE 401	TRANSMISSION AND DISTRIBUTION OF	3	0	0	3						
3:0:0	ELECTRIC POWER	L	Т	Р	Η						
UNIT I	UNIT I TRANSMISSION LINE PARAMETERS										
Structure of electric power system: Various levels such as generation, transmission and distributio											
- Resistance,	- Resistance, Inductance and Capacitance calculations - Single-phase and three-phase lines -										
double circuit lines – effect of earth on transmission line capacitance.											
UNIT II PERFORMANCE OF TRANSMISSION LINES											
Regulation and efficiency – Tuned power lines, Power flow through a transmission line – Power circle diagrams, Introduction to Transmission loss and Formation of corona – critical voltages – effect on line performance – travelling waveform phenomena.											
UNIT III	MECHANICAL DESIGN OF OVERHEAD LINES				09						
Line supports	- Insulators, Voltage distribution in suspension insulators	s – Te	esting	of in	sulators –						
string efficien	cy - Stress and sag calculation - effects of wind and ice load	ding.									
UNIT IV UNDERGROUND CABLES											
Comparison with overhead line – Types of cables – insulation resistance – potential											
gradient – cap	acitance of single-core and three-core cables										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT V	DISTRIBUTION SYSTEM			09						
General aspects - Kelvin's Law - A.C. distribution - Single-phase and three phase - Techniques of										
voltage control and power factor improvement – Introduction to Distribution loss – Recent trends in										
transmission a	nd distribution systems									
	LECTURE TUTORIAL TOTAL									
		45	0	45						

TE	XT BOOKS
1.	D.P.Kothari and I.J. Nagrath, 'Power System Engineering', Tata McGraw–Hill, 2
	nd Edition, 2008.
2.	B.R.Gupta, 'Power System Analysis and Design', S.Chand, New Delhi, 2003.
3.	S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall
	India Pvt. Ltd, 2002.
RE	FERENCE BOOKS
1.	Luces M.Fualkenberry ,Walter Coffer, 'Electrical Power Distribution and Transmission',
	Pearson Education, 1996.
2.	Hadisaddak, 'Power System Analysis,' Tata McGraw Hill Publishing Company',2003
3.	Central Electricity Authority (CEA), 'Guidelines for Transmission System Planning', New
	Delhi
4.	Tamil Nadu Electricity Board Handbook', 2012.
ER	EFERENCES:
1.	NPTEL, Power System Generation, Transmission and Distribution Prof. D. P. Kothari
	Center for Energy Studies Indian Institute of Technology, Delhi

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus POs mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	1	3			1		3			1		2	2	3
CO 2	1	3	1									1	3	2
CO 3	1			1		1			1	1			2	3
CO 4	1	2						1			1	1	2	2
CO 5		2										1	2	3
Total	4	10	1	1	1	1	3	1	1	2	1	5	11	13
Scaling	1	2	1	1	1	1	1	1	1	1	1	1	3	3

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

09

NAAC ACCREDITED ENVIRONMENTAL STUDIES

Cours	e Outcomes (PSC 402)	Domain	Level
CO1	Describe the significance of natural resources and	Cognitive	Remembering
	explain anthropogenic impacts.		Understanding
CO2	Illustrate the significance of ecosystem and biodiversity	Cognitive	Understanding
	for maintaining ecological balance		
CO3	Identify the facts, consequences, preventive measures of	Cognitive	Remembering
	major pollution and <i>Recognize</i> the disaster phenomenon	Affective	Receiving
CO4	Explain the socio- economics, policy dynamics and	Cognitive	Understanding
	practice the control measures of global issues for		Analyzing
	sustainable development.		
CO5	Recognize the impact of population and apply the	Cognitive	Understanding
	concept to develop various welfare programs.		Applying

SUB	8. CC	DDE	SUB. NAME	L	Т	P	С
P	SC 4	02		3	0	0	3
С	P	Α	Environmental Studies	L	Т	Р	Η
2.5	0	0.5		3	0	0	3
		1		•••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND ENERGY 09 Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660

PERIYAR Maniammai University

12

06

UNIT III ENVIRONMENTAL POLLUTION NAAC ACCREDITED

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Soil waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT IVSOCIAL ISSUES AND THE ENVIRONMENT09

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Production Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – Population explosion – Family Welfare Programme – Environment and human health – Human Rights – Value Education - HIV / AIDS – Women and Child Welfare – Role of Information Technology in Environment and human health – Case studies.

TEXT BOOKS

Lecture = 45; Tutorial = 00; Total = 45 Hours

- 5. Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co, USA, 2000.
- 6. Townsend C., Harper J and Michael Begon, Essentials of Ecology, Blackwell Science, UK, 2003
- 7. Trivedi R.K and P.K.Goel, Introduction to Air pollution, Techno Science Publications, India, 2003.
- 8. Disaster mitigation, Preparedness, Recovery and Response, SBS Publishers & Distributors Pvt. Ltd, New Delhi, 2006.
- 9. Introduction to International disaster management, Butterworth Heinemann, 2006.
- 10. Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson Education Pvt., Ltd., Second Edition, New Delhi, 2004.

REFERENCE BOOKS

- 1. Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, Vol. I and II, Enviro Media, India, 2009.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. S.K.Dhameja, Environmental Engineering and Management, S.K.Kataria and Sons, New Delhi, 2012.
- 4. Sahni, Disaster Risk Reduction in South Asia, PHI Learning, New Delhi, 2003.
- 5. Sundar, Disaster Management, Sarup & Sons, New Delhi, 2007.
- 6. G.K.Ghosh, Disaster Management, A.P.H.Publishers, New Delhi, 2006.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E REFERENCE

- 1. Bharat Raj Singh , 2015, Global Warming: Causes, Impacts and Remedies , InTech.
- 2. Richard C. J. Somerville, The Forgiving Air: Understanding Environmental Change, 1998,
- 3. University of California Press Benny Joseph, Environmental Studies, 2005, Tata McGraw Hill.

Mapping of CO's with GA's:

	GA											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											1
CO2	2					2	1			1		1
CO3	2	1	3			3	1		2	1		1
CO4	1	1	2			3	2	3				1
CO5	2	1	1			3						1
Total	10	3	6			11	4	3	2	2		5
Scaled to 0,1,2,3 scale	2	1	2			3	1	1	1	1	1	1

0 -No relation1 - Low relation2 - Medium relation3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

HIGH VOLTAGE ENGINEERING

Cours	e Outcomes (PEE 403)	Domain	Level
CO1	<i>Explain</i> the different causes of overvoltage and <i>Illustrate</i> overvoltage control due to switching. <i>classify</i>	Cognitive	Understanding
	the various methods for protection of lightning overvoltage		
CO2	<i>Explain</i> and <i>Classify</i> breakdown mechanisms in solid, liquid and gases dielectrics <i>and list out the application of insulating materials</i>	Cognitive	Understanding
CO3	Able to define and <i>Classify</i> the different methods to generate the various types of high voltages and high currents.	Cognitive	Understanding
CO4	<i>Classify</i> and <i>analyze</i> the different techniques used to measure the various types of high voltages and high currents.	Cognitive	Understanding Analyzing
CO5	Recall and Illustrate the different testing methods to test the various high voltage components of power System and <i>define</i> the International,Indian standards and insulation co-ordination.	Cognitive	Remembering Understanding

	SUB		SUB NAME	L	Т	Р	С				
(CODI	E									
P	EE 4(03		3	1	0	4				
С	Р	Α	High Voltage Engineering	L	Т	Р	Η				
3	0	0		3	1	0	4				
UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS											
Nat	ural C	Causes	of overvoltage-Lightning phenomena and its effects on power system	- Ov	er vo	ltage	due				
to switching surge-power frequency overvoltage-control of overvoltage due to switching – protection											
tran	transmission lines against overvoltage – Becoleys lattice diagram.										
UN	IT II		ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUI	DS		09-	+05				
Gas	eous	break	down in uniform and non-uniform fields - corona discharges - Va	cuum	brea	kdov	vn -				
con	ductio	on an	d breakdown in pure and commercial liquids - Breakdown mechan	nisms	in s	olid	and				
com	posit	e diel	ectrics-Applications of insulating materials.								
UN	IT III	[GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS	•		09-	+05				
Gen	eratio	on of I	High DC, AC, impulse voltages and currents. Tripping and control of in	mpuls	se ger	erato	ors.				
UN	IT IV	r	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 09+05								
Mea	Measurement of High direct current voltages - measurement of voltages: alternating and impulse										
volt	voltages- Measurement of High currents: direct, alternating and impulse currents.										
Dig	ital te	chniq	ues in high voltage measurement.								

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

09 + 05

NAAC ACCREDITED

UNIT V HIGH VOLTAGE TESTING OF ELECTRICAL APPARATUS

High voltage testing of electrical power apparatus – power frequency, impulse voltage and DC testing – International and Indian standards-Insulation co-ordination.

Lecture = 45; Tutorial = 30; Total = 75 Hours

TEXT BOOKS

- 1. E. Kuffel and M. Abdullah, 'High Voltage Engineering', Pergamon press, Oxford, 2010.
- 2. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill,4thEdition, 2004.
- 3. E. Kuffel and W.S. Zaengl, 'High Voltage Engineering Fundamentals', Pergamon Press, Oxford, London, 2012
- 4. August F.Metraux. "Some problems and actual limits of test techniques at extra high voltages", Haefely publications EIS 14.

REFERENCE BOOKS

- 1. C.L.Wadhwa, 'High Voltage Engineering', New Age International (P) Ltd, 2nd Edition2006.
- 2. Ravindra Arora, Wolfgang Mosch, "High Voltage Insulation Engineering", New Age International (P) Limited, 2011.
- 3. Chinnappa ,K.M., Need for next higher voltage level in India", National seminar on high voltage AC and Dc Transmission,New delhi.

E REFERENCES

- 1. Web Content http://www.library.dce.edu/e-resources/books/ee/
- 2. NPTEL-High Voltage Engineering, C.L. Wadhwa -IIT Madras.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600
 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

COs versus PO, PSO mapping

CO/ PO/PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	-	-	1	-	1	-	-	-	2	2	2
CO2	3	2	-	-	-	-	-	-	-	-	-	1	1	2
CO3	2	2	-	-	1	1	-	1	-	-	-	1	1	1
CO4	2	2	-	-	-	-	1	-	-	-	-	1	2	2
CO5	2	2	-	2	-	1	-	-	-	-	-	2	2	2
Total	12	10	2	2	1	3	1	2	0	0	0	7	8	9
Scaling	3	2	1	1	1	1	1	2	0	0	0	2	2	2

0 –No relation 1 – Low relation	2 – Medium relation 3 – High Relation
---------------------------------	---------------------------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

CONTROL SYSTEMS ENGINEERING

Cours	se Outcomes (PEE 404)	Domain	Level						
CO1	Identify the basic elements, derive the transfer function	Cognitive	Applying						
	and Construct the transfer function of DC motors and		Applying						
	DC generators								
CO2	Explain the performance of I and II system with static	Cognitive	Understanding						
	and dynamic error coefficients.								
CO3	Describe Time domain & Frequency domain and	Cognitive	Remembering						
	shows the response of time and frequency domain		Understanding						
CO4	Explain State space model and construct and verify the	Cognitive	Understanding						
	canonical state model and kalmans test for		Applying						
	controllability and observability.								
CO5	Describe State transition matrix	Cognitive	Remembering						

SU	B CO	DE	SUB NAME	L	Т	Р	С				
P	EE 4	04		3	1	1	5				
С	Р	Α	Control System Engineering	L	Т	Р	Η				
3	1	0		3 2							
UN	TI	SYS	FEMS AND THEIR REPRESENTATION			10 + 09	+ 20				
Basi	Basic elements in control systems - Open and closed loop systems - Principles of feedback,										
Trar	Transfer function Block diagram reduction techniques - Signal flow graphs. Mason gain formula,										
Mod	leling	of ele	ectric systems translation and rotational mechanical systems.								
UN	TI	TIM	E RESPONSE			08 +	09				
Tim	e resp	onse	- Time domain specifications - Types of test input - I and II	order	syste	em respo	onse –				
Erro	r coe	fficier	nts – Generalized error series – Steady state error								
UN	T III	FRE	EQUENCY RESPONSE			09 + 03	+ 05				
Free	uenc	y dom	ain specification - Bode plot - Polar plot - Determination	of clo	osed 1	loop res	ponse				
from	n oper	n loop	presponse - Correlation between frequency domain and tim	e dor	nain	specific	ations				
serie	es, pa	rallel,	series-parallel compensators, Lead, Lag and Lead Lag Comp	ensat	ors.						
UN	UNIT IV STABILITY OF CONTROL SYSTEM09 + 06 + 05										
Cha	Characteristics equation – Location of roots in S plane for stability – Routh Hurwitz criterion – Root										
locu	locus construction - Effect of pole, zero addition - Gain margin and phase margin - Nyquist										
stab	stability criterion										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

09 + 03

NAAC ACCREDITED

UNIT V STATE VARIABLE ANALYSIS & DIGITAL CONTRO SYSTEMS

Introduction to state Space Analysis – Physical Variable phase variable and canonical variable forms State Space representation of continuous time system. Transfer function from state variable representation – solutions of the state equations – concepts of controllability and observability

- 1. Transfer function and modeling of separately excited DC Generator.
- 2. Transfer function and modeling of Armature & field controlled DC Motor.
- 3. Transfer function of AC Servomotor.
- 4. Frequency response of Lag, Lead & Lag Lead networks.
- 5. Analysis of Synchro Transmitter and Receiver.
- 6. Performance of DC Stepper Motor
- 7. Transfer function and modeling of Ward Leonard speed control system applied to DC motor.
- 8. DC Position using feedback Control system.
- 9. Digital simulation of I order and II order system by using Scilab.
- 10. Determination of Phase margin and Gain margin of the Bode plot using Scilab.

Lecture = 45; Tutorial = 30; Lab = 30; Total = 105 Hours

TEXT BOOKS:

- 1. I.J. Nagrath& M. Gopal, 'Control Systems Engineering', New Age International Publishers, 2003
- 2. Norman S. Nise, "Control System Engineering" fifteh edition, John Wiley & Sons, inc, 2007.
- 3. M. Gopal, 'Control Systems, Principles & Design', Tata McGraw Hill, New Delhi, 2002.
- 4. Richard C. Dorf & Robert H. Bishop, "Modern Control Systems", Addidon Wesley, 2012.

REFERENCE BOOKS:

- 1. B.C. Kuo, 'Automatic Control Systems', Prentice Hall of India Ltd., New Delhi, 2014.
- 2. K. Ogata, 'Modern Control Engineering', 4th edition, Pearson Education, New Delhi, 2003 / PHI.
- 3. N. Bandyopadhyay, 'Control Engineering Theory and Practice', Prentice Hall of India, 2009
- 4. John J.D'azzo & Constantine H.Houpis, 'Linear control system analysis and design', Tata McGrow-Hill, Inc., 2013.

E-REFERENCES:

1. NTPEL, Control sytems Engineering (Web Course), Prof. M. Gopal, IIT Kharagpur.

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

Fax: + 91- 4362 - 264660

Web: www. pmu.edu

Phone: + 91 - 4362 - 264600

Email: headeee@pmu.edu

NAAC ACCREDITED

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	2	3	2	1	-	-	1	1	1	-	-	1	-	-
CO2	2	3	1		2	1	1	1	1	1	-	2	2	1
CO3	3	3	3	2	-	-	1	-	3	-	-	-	2	2
CO4	1	2	2	3	1	2	1	1	2	1	1	2	1	2
CO5	2	1	1	1	1	1	1	1	2	1	-	1	2	1
Total	10	13	9	7	4	4	5	4	9	3	1	6	7	6
Scaling	2	2	2	2	1	1	1	1	2	1	1	2	2	2

0 –No relation	1 – Low relation	2 – Medium relation 3 – High Relation
----------------	------------------	---------------------------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

PEE 501 PROTECTION AND SWITCHGEAR

Cours	se Outcomes (PEE 501)	Domain	Level	
CO1	To <i>Illustrate</i> and <i>recall</i> the principle, characteristics and	Cognitive	Understanding	
	working of different types of relay.		Remembering	
CO2	To <i>choose</i> relevant protection systems for the Generator	Cognitive	Applying	
	and Transformers.		Evaluating	
CO3	To compare the concepts of arc quenching techniques	Cognitive	Analyzing	
	of different equipments.			
CO4	To <i>classify</i> the different type of Circuit breakers and its	Cognitive	Analyzing	
	selection criteria.			
CO5	To select of different type of equipments used for over	Cognitive	Applying	
	voltage protection and Lightning arrestors.			

SUB CODE	SUB NAME	L	Т	Р	С					
PEE 501		3	0	0	3					
C P A	Protection and Switchgear	L	Т	Р	Η					
3 0 0		3	0	0	3					
UNIT- I	RELAYS			0	9					
General classification, Principle of operation, types, characteristics, Torque equation, Relaying										
Schemes, R	elay Co- ordination. Requirement of relays, Primary & backup p	rotec	tion,	Desi	rable					
qualities of	qualities of relays. Terminology used in protective relay. Over current relays directional distance									
and differential, under frequency, negative sequence relays.										
UNIT- II APPARATUS PROTECTION 09										
Protection of Generator: Earth Fault, percentage, differential, Loss of excitation Prime mover										
failure, ove	er current, Negative phase sequence, heating, Reverse power	prote	ction	sch	emes					
.Protection	of Transformers: Internal and external fault protection. Differentia	l. Ea	rth f	ault.	Over					
Current, Ov	erheating. Transformer Protection - Incipient fault.	,		,						
UNIT-III	THEORY OF CIRCUIT INTERRUPTION			0	9					
Physics of a	arc phenomena and interruption- rate of rise of recovery voltage. Element	menta	irv p	rincir	le of					
arc quench	ing, Recovery and re-striking voltage, arc quenching devices,	curr	rent	chop	ping.					
capacitive c	capacitive current, resistance switching, interruption of capacitive current.									
UNIT- IV	CIRCUIT BREAKERS 09									
Switchgear,	fault clearing, description and operation of Bulk oil, Minimum oil,	Air b	reak,	Air ł	olast,					
SF6, Vacuum circuit breakers and DC circuit breakers, LT Switch gear, HRC fuses, current limiting										
reactor & influence of reactors in CB ratings, selection of circuit breakers, Testing of circuit breaker,										
Intelligent c	Intelligent circuit breakers.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

09

NAAC ACCREDITED

UNIT- V PROTECTION AGAINST OVERVOLTAGES

Switching surges, Phenomena of Lightning, over voltage due to lightning, Protection against lightning, Lightning arrestors, selection of lightning arrestors, Surge absorbers, and diverters, Rod gap, Horn gap expulsion type & valve type lightning arrestors, solid resistance and reactance earthing, Arc suppression coil, Earthing transformers, Earthwires, insulation co-ordination.

Lecture = 45; Tutorial = 00; Total = 45 Hours

TEXT BOOKS

- 1. Badri Ram, Vishwakarma D N., "Power System Protection and Switchgear" Tata McGraw Hill Publishing House Limited, New Delhi, 2005.
- 2. Soni, M.L., Gupta, P.V., Bhatnagar, U.S. and Chakrabarti, A., "A Text Book on Power Systems Engineering", Dhanpat Rai & Sons Company Limited, New Delhi, 2008.
- 3. Sunil, S.Rao, "Switchgear Protection and Power Systems (Theory, Practice & Solved Problems", Khanna Publishers Limited, New Delhi, 12th Edition, 2008.
- 4. B.Ravindranath, and N.Chander, 'Power System Protection and Switchgear', WileyEastern Ltd., 2000.

REFERENCE BOOKS

- 1. Paithankar Y. G., Bhide S. R., "Fundamentals of Power System Protection" Prentice Hall of India Limited, New Delhi, 2nd Edition, 2010.
- 2. Wadhwa, C.L., "Electrical Power Systems", New Age International Publishers Limited, 2006, New Delhi,6th Edition, 2010
- 3. Patra, S.P., Basu, S.K. and Chowduri, S., 'Power systems Protection', Oxford and International Book House Publishing Co, 2000.

E-REFERENCES

1. NTPEL, Power System Generation, Transmission and Distribution ,Prof. D. P. Kothari Center for Energy Studies ,Indian Institute of Technology, Delhi

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600
 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www.pmu.edu

COs versus POs mapping

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	-	-	-	1	-	-	-	1	1
CO2	2	2	-	2	1	-	-	-	-	-	-	-	1	1
CO3	2	-	-	-	1	-	-	-	1	-	-	-	1	1
CO4	2	2	2	2	1	-	-	-	1	-	-	-	1	1
CO5	2	-	-	-	1	-	-	-	-	-	-	-	1	1
Total	10	6	4	6	5				3				1	5
Scaling	2	1	1	1	1				1				1	1

0 –No relation	1 – Low relation	2 – Medium relation 3 – High Relation
----------------	------------------	---------------------------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

LINEAR INTEGRATED CIRCUITS

Cours	se Outcomes(PEE503):	Domain	Level
CO1	Illustrate and classify the different manufacturing process	Cognitive	Understanding
	of ICs.		Understanding
CO2	<i>Explains</i> the terminal characteristics of op – amps.	Cognitive	Understanding
CO3	<i>Illustrate</i> and <i>design</i> the various application of op – amps.	Cognitive	Understanding
			Creating
CO4	<i>Illustrate</i> the various functional block, characteristics and	Cognitive	Understanding
	applications of special ICs.		
CO5	Classify and explain the different techniques of data	Cognitive	Understanding
	converters.		Understanding

SUB CODE	SUB NAME	L	Т	Р	С					
PEE503		3	1	0	4					
C:P:A	LINEAR INTEGRATED CIRCUITS	L	Т	Р	Н					
2:0:0		3	2	0	5					
UNIT- I	IC FABRICATION			9	+ 6					
Introduction of IC fabrication, Advantages & Limitation of ICs, Scale of integration, classification										
of ICs; IC Terminology; Fundamentals of monolithic IC technology, Crystal growth and wafer										
preparation, Epitaxial growth, Oxidation, Photolithography, etching, Diffusion, Ion implantation,										
Metallization, packaging of ICs.										
UNIT- IICHARACTERISTICS OF OP – AMP9 + 6										
Basics of Op – amp, Ideal Op – amp characteristics, DC characteristics, AC characteristics, Open										
Loop and C	losed Loop configuration of Op - amp, Packages of Op - and	mp, In	verting	g & N	lon –					
inverting an	nplifier, Voltage follower, Differential amplifier; Frequency r	espons	e of (Op –	amp;					
Basic applica	ations of op – amp – summer, Differentiator and Integrator.									
UNIT- III	APPLICATION OF OP – AMP			9	+ 6					
Instrumentat	ion amplifier, First and second order active filters, V / I	and I	/ V	conve	erters,					
Comparators	- Regenerative comparator (Schmitt Trigger), Multi vibrators	Astabl	e & M	lonos	table;					
Waveform g	enerators- RC phase shift oscillator; Wien bridge oscillator; Tria	angula	wave	gene	rator;					
Clippers, Cla	Clippers, Clampers.									
UNIT- IV	SPECIAL ICs			9	+ 6					
555 Timer circuit – Functional block, Characteristics and applications; 566 – Voltage controlled										
oscillator cir	cuit; 565 – Phase lock loop circuit functioning and applications.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

NAAC ACCREDITED

UNIT- V

ANA LOG TO DIGITAL AND DIGITAL TO ANA LOG CONVERTERS; SPECIAL FUNCTION ICS.

9+6

Introduction of A/D and D/A converters, Sample & Hold circuit, D /A converter (R - 2R ladder and weighted resistor types), A / D converter – Dual slope, Successive approximation and Flash types. ICL 8038 function generator IC. Isolation Amplifiers.

		LECTURE	TUTORIAL	TOTAL					
		45	30	75					
TEXT B	BOOKS:								
1.	Ramakant . A. Gayakwad 'Op – Amps and Line	ear Integrated (Circuits', Prentic	e Hall of					
	India 3 rd Edition, 2001.								
2	Linear Integrated Circuits by D. Roy Choudhur	y and Shail B.	Jain, New Age I	nternational					
2.	Publishers.								
REFER	ENCE BOOKS:								
1.	S.M. Sze, 'VLSI Technology, 2 nd Edition, Tata	McGraw Hill,2	2000.						
2	Sergio Franco, 'Design with Operational Amplifiers and Analog and Integrated Circuits',								
2.	2 nd Edition, McGraw Hill,2002.								
3.	National Semiconductor/Texas – TTL/MOS/VL	SI Data Manu	als.						
E REFE	RENCES :								
1.	NPTEL, Linear Integrated Circuits, Prof. Clark	Tu - Cuong N	guyen, IIT Madı	as.					
2.	NPTEL, Linear Integrated Circuits, Prof. TS. Natarajan, IIT Madras.								

COs versus PO, PSO mapping

CO/ PO/PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C01	2	3	-	2	3	-	-	-	-	-	-	-	2	2
CO2	2	1	1	2	2	-	-	-	-	-	-	-	1	1
CO3	1	2	-	3	2	-	-	-	1	-	1	-	1	1
CO4	1	2	-	2	2	-	-	-	-	-	-	-	2	1
CO5	3	2	-	2	2	-	-	-	-	-	-	-	1	2
Total	09	10	01	11	11	0	0	0	01	0	01	0	07	07
Scaling	2	2	1	3	3	0	0	0	1	0	1	0	2	2

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

PEE 504 POWER ELECTRONICS

Cours	e Outcomes (PEE 504)	Domain	Level
CO1	Describe the structure, operation and characteristics of power	Cognitive	Understanding
	semiconductor devices.	Psychomotor	Set
		~	
CO2	Determine the operation, characteristics and	Cognitive	Understanding
	performance parameter of controlled rectifiers	Psychomotor	Set
CO3	Illustrate the chopper circuits, Switching techniques	Cognitive	Applying
	and basic topologies of DC-DC switching regulators	Psychomotor	Set
CO4	Analysis the operations of various inverters and infer the	Cognitive	Analyzing
	suitable PWM techniques	Psychomotor	Set
CO5	Classify the 1ϕ , 3ϕ voltage controllers and	Cognitive	Understanding
	cyclo-converter.	Psychomotor	Set

Sı	ıb.co	de	Sub Nome	L	Т	Р	С			
P	EE5()4	Sub. Maille	3	1	1	5			
С	Р	Α	Power Electronics	L	Т	Р	Η			
3	1	0		3	2	2 7				
UNI	ΤI	POW	ER SEMI-CONDUCTOR DEVICES			09 +06+09				
Revi	Review on Semiconductor devices - characteristics and modeling of power diodes, SCR,									
TRIAC, power BJT, power MOSFET and IGBT. Triggering and Commutation Circuits.										
UNIT II PHASE CONTROLLED CONVERTERS										
2 pulse, 3 phase converters- effect of freewheeling diode, performance parameters and										
effect of source inductance - firing circuits, Dual converters.										
UNI	T III	DC	TO DC CHOPPERS			09+06	6+06			
Туре	es of	Chop	pers, Class A to E, step up chopper - Analysis	of V	oltage,	Current	t and			
load	-com	mutat	ed choppers - Introduction to Resonant converter	s.						
UNI	T IV	INV	ERTERS			09+06	+06			
Sing	le pl	nase,	Three Phase voltage source inverters (Both	120° a	and 18	80° mod	le of			
cond	luctio	ns) -	PWM techniques: Sinusoidal PWM, Multiple PV	VM, s	pace v	ector PV	VM -			
Curr	ent so	ource	inverters - Concepts of UPS.							
UNIT V AC VOLTAGE CONTROLLERS 09										
Single-phase and 3 phase AC voltage controllers Multi stage sequence control - step up										
and step down cyclo-converters – Single phase to single phase and Single phase to Three										
phas	e cyc	lo-co	nverters- Introduction to matrix converters.							

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

	PEE 504 – Power Electronics Laboratory								
Nan	ne of the Experiments:								
1.	Characteristics of SCR								
2.	Characteristics of MOSFET								
3.	Characteristics of IGBT								
4.	1Φ fully Controlled rectifier with R, RL load.								
5.	BUCK- BOOST Converter using MOSFET.								
6.	IGBT based choppers.								
7.	1Φ IGBT PWM inverter.								
8.	Parallel Inverter.								
9.	1Φ AC voltage controller using SCR / TRIAC.								
10.	Mini Project (Related to above experiments).								
	Lecture = 45; Tutorial = 30; Lab = 30; Total = 105 Hours								

TEXT BOOKS :

- 1. Rashid, M.H., 'Power Electronics Circuits Devices and Applications', Prentice Hall of India,2004.
- 2. Singh.M.D and Kanchandani , 'Power Electronics'-Tata McGraw Hill & Hill publication Company Ltd New Delhi-2009.
- 3. BimbhraP.S, "Power Electronics" Khanna Publishers; 2007
- 4. Ned Mohan, Tore M. Undeland and William P.Robbins, *Power Electronics:* Converters, Applications and Design, New Jersey, John Wiley and Sons, 2006.

REFERENCE BOOKS:

- 1. Dubey, G.K., Doradia, S.R., Joshi, A. and Sinha, R.M., 'Thyristorised Power Controllers', Wiley Eastern Limited, 1986.
- 2. Lander, W., 'Power Electronics', McGraw Hill and Company, Third Edition, 2009.
- 3. Sen.P.C "Power Electronics" Tata McGraw-Hill Publishing Co. Ltd., New Delhi 2005
- 4. Joseph Vithayathil "Power Electronics" McGraw-Hill New York 1996.

E REFERENCES:

- 1. *Lecture* Series on *Power Electronics* by Prof. B.G. Fernandes, Department of Electrical Engineering, IIT Bombay.
- 2. http://www.nptel.ac.in/courses/108105066/PDF/L-1(SSG)(PE)%20((EE)NPTEL).pdf

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

COs versus PO, PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	2	1	0	0	1	3	0	0	0	0	1	3	1
CO 2	2	1	2	1	0	0	1	0	0	0	0	0	2	2
CO 3	3	1	1	0	0	0	0	0	0	0	0	0	1	2
CO 4	1	3	2	0	0	1	0	0	0	0	0	0	2	1
CO 5	1	2	3	1	3	0	1	1	0	0	0	0	3	2
Total	10	9	9	2	3	2	5	1	0	0	0	1	11	6
Scaling	2	2	2	1	1	1	1	1	0	0	0	1	3	2

0 – No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600
 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

Cours	e Outcomes (PEE 602)	Domain	Level
C01	<i>Demonstrate</i> the per phase analysis of power system.	Cognitive	Understanding
CO2	Develop the model of various components of power system and Construct the Y Bus and Z Bus for a power system.	Cognitive	Applying
CO3	<i>Analyze</i> the power system network with symmetrical and unsymmetrical faults. <i>Calibrate</i> the fault current in a power system.	Cognitive Psychomotor	Analyzing Complex
CO4	<i>Summarize</i> the power flow equation. <i>Assess</i> the voltage profile of a power system by performing the load flow analysis and <i>Identify</i> the line loss and line flow.	Cognitive Psychomotor	Understanding Evaluating Perception
CO5	<i>Classify</i> and <i>determine</i> the stability of power system. <i>Detect</i> the transient behaviour of power system when it is subjected to a fault.	Cognitive psychomotor	Understanding Evaluating Perception

SU	B.CC	DDE	SUB NAME	L	Т	Р	С					
P	EE 6	02		3	1	0	4					
С	Р	Α	Power System Analysis	L	Т	Р	Η					
3	1	0		3	2	0	5					
UNIT I INTRODUCTION												
Nee	ed for	: syste	em analysis in planning and operation of modern power system	n – per	r phase	e anal	ysis -					
Single line diagram - Per unit representation and Per unit calculations - Change of base -												
Introduction to Electricity Deregulation.												
UNIT IIMODELLING OF POWER SYSTEM COMPONENTS09+09												
Primitive network and its matrices – bus incidence matrix – bus admittance and bus impedance												
mat	rix f	orma	tion – Z – Bus building algorithm - Modelling of genera	ator, lo	oad, ti	ansfo	rmer,					
tran	smis	sion l	ine for different power system studies.									
U	NIT	III	FAULT ANALYSIS-UNSYMMETRICAL FAULTS			09	09+05					
Nee	ed for	shor	t circuit study - basic assumptions in fault analysis of power sy	stems.	Symm	etrica	al (or)					
bala	nced	three	e phase faults – problem formulation – fault analysis using Z	-bus m	atrix -	- algo	rithm					
and	flow	char	t. Computations of short circuit capacity, post fault voltage an	d curre	ents. Ii	ntrodu	iction					
to s	symn	netric	al components - sequence impedances - sequence network	ks Uns	ymme	trical	fault					
analysis: L-G, L-L and L-L-G faults.												
UNIT IVPOWER FLOW ANALYSIS10+06												
Need for Power Flow Analysis – bus classification – derivation of power flow equation – solution												
by Gauss–Seidel, Newton–Raphson and Fast Decoupled Power Flow methods – comparison of three												
met	hods	•										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956 NAAC ACCREDITED

Lecture = 45; Tutorial = 30; Lab = 0; Total = 75 Hours

09+03

UNIT V STABILITY ANALYSIS

Types of stability - Swing equation in state space form - equal area criterion - stability analysis of single machine connected to infinite bus by modified Euler's method using classical machine model – critical clearing angle and time. Causes of voltage instability – voltage stability proximity indices for two-bus system – methods of improving power system stability.

TEXT BOOKS

- 1. Hadi Sadaat, "Power System Analysis", Tata McGraw Hill Publishing Company, 2002.
- 2. Nagarath, I.J., and Kothari, D.P., 'Modern Power System Analysis', Tata McGraw Hill Publishing Company, 2009.
- 3. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", McGraw Hill International Edition, 1994.
- 4. Pai. M.A "Computer techniques in Power System Analysis" Tata McGraw Hill Publishing Company, 3rd edition 2014.

REFERENCE BOOKS

- 1. Stagg, G.W. and El-Abaid, A. H. "Computer Methods in Power System Analysis", McGraw-Hill International Book Company, 2000.
- 2. Wadhwa C.L. "Electric Power Systems" Willey Eastern, 2007.

E-REFERENCES

- 1. http://nptel.ac.in/courses/108105067/ Prof. A. K. Sinha, IITechnology, Kharagpur.
- 2. http://nptel.ac.in/courses/Webcourse-contents/IIT-KANPUR/power-system/ui/TOC.htm Prof. Arindam Ghosh, IIT Kanpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	2		2			1				1		2	
CO 2	3	2	2	2			1				1		2	1
CO 3	3	2	2	2	3		1				1		2	1
CO 4	3	3	2	3			1				1		2	1
CO 5		2	1	1							1		3	1
Total	12	11	7	10	3	0	4	0	0	0	5	0	11	4
Scaled to 0,1,2,3 scale	3	3	2	2	1	0	1	0	0	0	1	0	3	1
		0 -	-No re	lation	1.	– Low	relati	ion 2	2 – Me	dium r	elation	3 -	High	

COs versus POs mapping

Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

SOLID STATE DRIVES

Cours	se Outcomes(PEE 603):	Domain	Level
CO1	Outline the fundamentals of Electric Drives and their	Cognitive	Understanding
	ratings.		
CO2	<i>List</i> the various control techniques of DC Drives.	Cognitive	Remembering
CO3	Categorize the different speed control methods for an	Cognitive	Analyzing
	Induction motor drive		
CO4	Illustrate the solid state converters based controllers for	Cognitive	Understanding
	Rotor control of an Induction motor drive		
CO5	Make use of the assorted control strategies of synchronous	Cognitive	Applying
	motor drive.		

Sub.code	Sub Nomo	L	Т	Р	С			
PEE 603	Sub. Maine	3	1	0	4			
C:P:A	SOLID STATE DRIVES	Т	Р	Η				
3:0:0		0	5					
UNIT-I	10+5							
Fundamentals of	of Electric Drives-Advantage of Electric Drives-	ves-sele	ction of	Motor	power			
rating-Thermal	model of motor for heating and coolin	ng - Cl	lasses c	of duty	cycle			
Determination	of motor rating - Control of Electric drives	- modes	of ope	ration -	speed			
control and driv	ve classifications.							
UNIT-II	SOLID STATE CONTROL OF DC DRI	VES		10	+5			
DC motor and their performance - Transient analysis - Ward Leonard drives - Steady state analysis of the single and three phase fully controlled converter fed separately excited DC motor drive – continuous and discontinuous mode Chopper controlled DC drives - Time ratio control and current limit control								
UNIT-III	STATOR CONTROLLED MOTORDRIVES	INDUC	TION	8+	-5			
Induction Moto	or Drives-Stator control-Stator voltage and	frequen	cy conti	ol – V	SI,CSI			
and cyclo conv	erter fed induction motor drives -open loop a	nd close	ed VVV	F contro	ol.			
UNIT-IV	IT-IV ROTOR CONTROLLED INDUCTION MOTORDRIVES		TION	8+5				
Rotor resistance control - Slip power recovery schemes -Sub synchronous and super								
synchronous operations – Power factor improvement – Closed loop control.								
UNIT-V	SYNCHRONOUS MOTOR DRIVES							
Separate controlled mode - Self controlled mode of synchronous motor - Constant								
marginal angle control and motor power factor control – Cyclo converter fed								

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660

PERIYAR MANIAMMAI UNIVERSITY

and headeee@pmu.edu Under Sec. 3 of UGC Act, synchronous motors- Digital Control and Drive Applications. ACCREDITED

Lecture = 45; Tutorial = 30; Lab = 0; Total = 75 Hours

TEXT BOOKS:					
1.	Dubey.G.K. "Fundamentals of Electrical drives", Narora publications, 2008				
2.	R. Krishnan, "Electricmotor& Drives; Modelling, Analysis and Control", Prentice Hall of India, 2001.				
3.	Gopal K. Dubey, Fundamentals of Electrical Drives, New Delhi, 2nd Edition, Narosa Publishing House, 2001.				
4.	B. K. Bose, 'Power Electronics and AC Drives', Prentice Hall Onglewood cliffs, New Jersey, 1998.				
REFE	RENCE BOOKS:				
1.	Murphy, J.M.D and TurnbullF.G., 'Thyristor control of AC Motors', Pergamon Press,1990.				
2.	Sen. P.C., 'Thyristor D.C. Drives', John Wiley and Sons, 1981.				
3.	Vedam Subrahmaniyam, 'Electric Drives Concepts and Applications', Tata McGraw HillPublishing company Ltd., 2011.				
4.	Gaekward, "Analog and Digital control systems", Wiley Eastern Ltd, 1989.				
E REFERENCES:					
1.	<i>Lecture</i> Series on Solid state devices by Prof. S.Karmalkar, Department of Electrical Engineering, IIT Madras.				
2.	http://nptel.ac.in/courses/108108077/				

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PS O 2
CO 1	3	2	1	0	2	0	1	0	0	0	0	0	0	3
CO 2	3	1	0	0	2	0	1	0	0	0	0	0	3	2
CO 3	1	2	3	0	2	0	0	1	0	0	0	0	1	2
CO 4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO 5	3	1	1	0	0	1	1	1	0	0	0	1	1	2
Total	10	8	5	0	9	1	4	2	0	0	0	1	7	11
Scalin g	2	2	1	0	2	1	1	1	0	0	0	1	2	3

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee @pmu.edu
 Web: www. pmu.edu

PEE 604 MEASUREMENTS AND INSTRUMENTATION

Cours	se Outcomes (PEE 604)	Domain	Level	
CO1	Describe functional elements of measuring	Cognitive	Remembering	
	Instruments. Design of bridge circuits for the			
	measurement of unknown parameters.			
CO2	<i>Explain</i> the construction and working of different types	Cognitive	Understanding	
	of indicating and integrating instruments.			
CO3	Describe the operation of A/D and D/A converters and	Cognitive	Remembering	
	to <i>perform</i> its characteristics			
CO4	<i>Explain</i> the construction and operation of recording	Cognitive	Understanding	
	Instruments. Carryout calibration test for measuring			
	instruments.			
CO5	<i>Explain</i> the different types of transducers.	Cognitive	Remembering	

SUI	JB.CODE SUB NAME			L	Т	P	С	
PEE 604		04		3	1	1	5	
С	Р	Α	Measurements and Instrumentation	L	Т	P	Η	
3	1	0		3	2	2	7	
UNIT I INTRODUCTION							09+05 +06	
Functional elements of an instrument - errors in measurement - static and dynamic characteristics statistical evaluation of measurement data - standard and calibration								

UNIT 2ELECTRICAL AND ELECTRONIC INSTRUMENTS09+05DC Ammeter – Multirange ammeter – Extension of ammeter range – RF ammeter –
Voltmeter – Analog Electromechanical instruments-Galvanometer- multirange voltmeter –
Extending Voltmeter range – Transistor voltmeter – Dual slope integrating type DVM —
instrument transformer –Magnetic measurement- instruments for measurement of frequency

and phase.

UNIT 3 SIGNAL CONDITIONING CIRCUITS

09+05 +18

Bridge circuits – Wheatstone's bridge – Maxwell's Bridge - Wien's bridge, Resonance Bridge – Hay's Bridge – Schering Bridge –De saulty bridge- differential ampflier – instrumentation amplifier – filter circuits, data acquisition system –Spectrum analyzer-Wagner's Earth (Ground) connection- Earthing techniques.

UNIT 4STORAGE AND DISPLAY DEVICES09+05
+06CRO - introduction - Block diagrams of Oscilloscope - simple CRO - circuit displays -
storage oscilloscope - digital CRO - X-Y recorder - magnetic recorder - strip chart recorder
- printers - LED, LCD and Dot matrix displays - Data logger-Virtual Instruments
Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660

PERIYAR MANIAMMAI UNIVERSITY

UNIT[®] TRANSDUCERS[®]

NAAC ACCREDITED

09+05

Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers. pH electrodes – Load cell-transducers for measurement of displacement, temperature, level, flow, pressure, velocity, acceleration, torque, speed, Smart Sensors.

- 1. Study of Voltmeter, Ammeter and Wattmeter Range Extension.
- 2. Characteristics of Thermal Transducers (Thermocouples).
- 3. Measurement of Pressure using LVDT.
- 4. AC Bridges:
 - a) Maxwell Inductance Bridge
 - b) Anderson Bridge
- 5. Wheatstone bridge.
- 6. Instrumentation Amplifiers.
- 7. A/D and D/A converters.
- 8. Calibration of Single phase and Three phase Energy meter.
- 9. Calibration of Current Transformer and potential transformer.
- 10. Measurement of Three phase power and power factor by two watt meter method.

Lecture = 45; Tutorial = 30; Practical = 30; Total = 105 Hours

TEXT BOOKS

- 1. Sawhney A.K 'A Course in Electrical & Electronic Measurements and Instrumentation' Dhanpat Rai and Sons,2007.
- **2.** Doebeling, E.O., 'Measurement Systems Application and Design', McGraw Hill Publishing Company.
- 3. H.S. Kalsi, 'Electronic Instrumentation', Tata Mc Graw Hill Co., 1995.
- 4. B Gupta, 'A course in Electronic and Electrical Measurement', S.K.Kataria & sons,Delhi-2003

REFERENCES BOOKS

- **1.** Golding E.W and Wills F.E 'Measurements and Measuring Instruments' Sir Isaac Pitman and Sons(P) Ltd, 1997.
- 2. Moorthy, D.V.S., 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd., 1995
- **3.** Dalley, J.W., Riley, W.F. and Meconnel, K.G., 'Instrumentation for Engineering Measurement', John Wiley & Sons, 1993

E REFERENCES

1. NPTEL, Measurements and Instruments, Prof.T.Anjaneyulu, Department of EEE, Indian Institute of Technology, Delhi.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

2015_OBE [B.Tech. (PT)]

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus POs mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PS O 2
CO 1	1			1		1	1			3			2	3
CO 2	1	1										1	2	3
CO 3	1		1		1			2		1			2	2
CO 4	1	2										1	2	2
CO 5									1		1	1	2	3
Total	4	3	1	1	1	1	1	2	1	4	1	3	10	13
Scalin g	1	3	1	1	1	1	1	1	1	1	1	1	2	3

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

PEE 701 ELECTRIC VEHICLES AND POWER MANAGEMENT

Cours	e Outcomes (PEE 701)	Domain	Level
CO1	Specify the key components of a vehicle propulsion system and their functions	Cognitive	Understanding
CO2	Select appropriate hybrid electric power-train architecture Determine appropriate type and size of hybrid electric power-train components and ESS	Cognitive	Understanding
CO3	Identify fundamental aspects of reactive power and its effect on system voltage and Select the suitable voltage control method for the system operating condition.	Cognitive	Understanding
CO4	Discuss battery and energy storage system	Cognitive	Understanding
CO5	Identify Alternative Energy Storage Systems	Cognitive	Understanding

SU	B. CO	DE	SUB NAME	L	Т	Р	С				
P	EE 70)1		3	0	0	3				
С	Р	Α	Electric Vehicles and Power Management	L	Т	Р	Η				
3	0	0		3	0	0	3				
l	UNIT	I	ELECTRIC VEHICLES AND VEHICLE MECHANI	CS			09				
Elect	ric Ve	hicles	(EV), Hybrid Electric Vehicles (HEV), Engine ratings, Con	nparis	ons of						
EV v	vith in	ternal	combustion Engine vehicles, Fundamentals of vehicle mech	nanics							
т			ARCHITECTURE OF EV's AND POWER TRAIN								
Ľ		LI	COMPONENTS								
Arch	itectu	re of E	V's and HEV's – Plug-n Hybrid Electric Vehicles (PHEV)	- Powe	r train						
comp	ponent	s and	sizing, Gears, Clutches, Transmission and Brakes								
U	NIT I	II	CONTROL OF DC AND AC DRIVES)9				
DC/DC chopper based four quadrant operations of DC drives – Inverter based V/f											
Operation (motoring and braking) of induction motor drive system – Induction motor and											
permanent motor based vector control operation – Switched reluctance motor (SRM) drives											

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

NAAC ACCREDITED UNIT IV **BATTERY ENERGY STORAGE SYSTEM** 09 Battery Basics, Different types, Battery Parameters, Battery modeling, Traction Batteries **ALTERNATIVE ENERGY STORAGE SYSTEMS** UNIT V 09 Fuel cell – Characteristics- Types – hydrogen Storage Systems and Fuel cell EV – Ultra capacitors Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours **TEXT BOOKS** 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003 2. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid 3. Chris Mi, M. Abul Masrur and David Wenzhong Gao, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, John Wiley and Sons, 2011 **REFERENCE BOOKS:** 1. Ali Emadi, Mehrdad Ehsani, John M.Miller Vehicular Electric Power Systems, Marcel dekker, 2004 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003 3. L. E. Carmichael, Hybrid and Electric Vehicles, ABDO Publishing Company, 2013

E-REFERENCES:

1. NPTEL : https://nptel.ac.in/downloads/108103009/

CO/ PO/PSO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	3	1	1	2	-	-	-	-	1	-	-	2	1
CO2	2	3	2	2	2	-	-	-	1	1	1	-	2	-
CO3	2	2	2	2	3	-	-	-	-	-	1	1	2	-
CO4	2	2	3	3	2	-	-	-	-	1	-	-	1	-
CO5	1	2	2	2	2	-	-	-	-	-	-	1	1	1

COs versus PO, PSO mapping

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660

4	T		62
X V B		1	VER
(LA)	K.		JE.

										Under Sec	3 of LIGC Act	1956	Innovate -	ITAN
Email: head	leee@pmu 10	edu 12	10	10 vveb: ww	w. pmu.e 11	au 0	0	0	NAA 1	C ACCRI 3	EDITED 2	2	8	2
Scaling	2	3	2	1	3	0	0	0	1	1	1	1	2	1

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PEE 702 POWER SYSTEM OPERATION AND CONTROL

Cours	se Outcomes (PEE 702)	Domain	Level
CO1	Explain power system load characteristics and generation reserve requirements.	Cognitive	Understanding
CO2	Demonstrate and Apply the mathematical knowledge to model and analysis of power system for frequency control.	Cognitive Cognitive	Understanding Applying
CO3	Identify fundamental aspects of reactive power and its effect on system voltage and Select the suitable voltage control method for the system operating condition.	Cognitive	Applying
CO4	Formulate economic dispatch and unit commitment problem and its solution.	Cognitive	Creating
CO5	Apply computer control methods for power system operation and control	Cognitive	Applying

SU CO	UB)DE		SUB NAME	L	Т	Р	С				
PEF	E 70	2		3	0	0	3				
CI	P	A	Power System Operation and Control	L	Т	Р	Н				
3 (0	0		3	0	0	3				
Un	it- 1		INTRODUCTION	09							
An o load reser and e	load curves and load-duration curve - load factor - diversity factor - Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves - Importance of load forecasting - quadratic and exponential curve fitting techniques for forecasting – plant level and system level controls.										
Uni	Unit- 2REAL POWER - FREQUENCY CONTROL09										
Basic shari singl areas state	Basics of speed governing mechanism and modeling - speed-load characteristics – load sharingbetween two synchronous machines in parallel - concept of control area - LFC control of a single-area system: static and dynamic analysis of uncontrolled and controlled cases - two-areasystem: modeling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model										
Uni	Unit- 3REACTIVE POWER-VOLTAGE CONTROL09										
Gene – mo chang volta	Generation and absorption of reactive power - basics of reactive power control - excitation systems – modeling - static and dynamic analysis - stability compensation - methods of voltage control: tap- changing transformer, injection reactive power - SVC (TCR + TSC) and STATCOM – secondary voltage control.										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Unit- 4 UNIT COMMITMENT AND ECONOMIC DISPATCH

09

Formulation of economic dispatch problem – I/O cost characterization – incremental cost curve - coordination equations without and with loss (No derivation of loss coefficients) - solution by direct method and λ -iteration method - statement of unit commitment problem – priority-listmethod - forward dynamic programming.

Unit- 5 COMPUTER CONTROL OF POWER SYSTEMS

09

Need for computer control of power systems - concept of energy control centre – functions - system monitoring - data acquisition and control - system hardware configuration – SCADA and EMS functions - network topology - state estimation – WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies.

Lecture = 45; Tutorial = 0; Lab = 00; Total =45 Hours

TEXT BOOKS:

- 1. Olle.I.Elgerd, 'Electric Energy Systems theory An introduction', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 34th reprint, 2010.
- 2. Allen. J. Wood and Bruce F. Wollenberg, 'Power Generation, Operation and Control', John Wiley & Sons, Inc., 2003.
- 3. Kundur P., 'Power System Stability and Control, Tata McGraw Hill, New Delhi, 5th reprint, 2008.

REFERENCE BOOKS:

- 1. Nagrath I.J. and Kothari D.P., 'Modern Power System Analysis', Tata McGraw-Hill, Fourth Edition, 2011.
- 2. Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21streprint, 2010.
- 3. Abhijit Chakrabarti, Sunita Halder, 'Power System Analysis Operation and Control', PHI learning Pvt. Ltd., New Delhi, Third Edition, 2010.

E-REFERENCES:

1. NPTEL : <u>http://nptel.ac.in/courses/108104052/</u>

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91 - 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

COs versus PO, PSO mapping

CO/ PO/PSO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	3	1	1	2	-	-	-	-	1	-	-	2	1
CO2	2	3	2	2	2	-	-	-	1	1	1	-	2	-
CO3	2	2	2	2	3	-	-	-	-	-	1	1	2	-
CO4	2	2	3	3	2	-	-	-	-	1	-	-	1	-
CO5	1	2	2	2	2	-	-	-	-	-	-	1	1	1
Total	10	12	10	10	11	0	0	0	1	3	2	2	8	2
Scaling	2	3	2	1	3	0	0	0	1	1	1	1	2	1

0 –No relation	1 – Low relation	2 – Medium relation	3 – High Relation
----------------	------------------	---------------------	-------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E 11 DESIGN OF ELECTRICAL APPARATUS

	Course Outcomes (E 11)	Domain	Level
CO1	Able to <i>define</i> and <i>recall</i> the different fundamental concepts of electrical and magnetic circuit parameters, Laws, MMF calculations, and their applications.	Cognitive	Remembering Remembering
CO2	Compare the main dimensions of different machines, and relate its impact on the design of various parts of AC and DC machines.	Cognitive	Understanding Understanding Creating
CO3	Categorize different types of Transformer based on its design. Understand about single phase and three phase transformer parameters and its efficiency calculation.	Cognitive	Understanding
CO4	Classify types of three phase Induction motor. Analyze the design procedure of each part of the motor.	Cognitive	Understanding Analyzing
C05	Classify types of three phase Synchronous motor. Analyze the design procedure of each part of the motor	Cognitive	Understanding Analyzing

SU	B CO	DE	SUB NAME	L	Т	P	С					
	E 11			3	0	0	3					
С	Р	Α	Design of Electrical Apparatus	L	Т	P	Η					
3	0	0		3	0	0	3					
UNI	ΤI	BAS	SIC CONSIDERATIONS IN MACHINES DESIGN			06						
Con	cept of	f mag	gnetic circuit - MMF calculation for various types of electrical m	achin	es –	real	and					
appa	apparent flux density of rotating machines – magnetic leakage.											
UNI	T II	D.C	. MACHINES			()6					
Constructional details - output equation - main dimensions - choice of specific loadings - choice of												
num	ber of	poles	s - armature design - design of field poles and field coil - design	of co	mmut	ator	and					
brus	hes.											
UNI	TIII	TRA	ANSFORMERS			()6					
Con	structio	onal c	letails of core and shell type transformers – output rating of single ph	ase ai	nd thr	ee pl	hase					
trans	forme	rs – c	optimum design of transformers - design of core, yoke and windings	s for	core a	nd s	shell					
type	transf	ormei	·S.									
UNIT IVTHREE PHASE INDUCTION MOTOR06												
Constructional details of squirrel cage and slip ring motors – output equation – main dimensions – choice												
of sp	of specific loadings – design of stator – design of squirrel cage and slip ring rotor.											

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

06

UNIT V SYNCHRONOUS MACHINES

Constructional details of cylindrical pole and salient pole alternators – output equation – choice of specific loadings – main dimensions – short circuit ratio – design of stator and rotor of cylindrical pole and salient pole machines - design of field coil.

Lecture = 45; Tutorial = 00; Total = 45 Hours

TEXT BOOKS:

- 1. A.K. Sawhney, 'A Course in Electrical Machine Design', DhanpatRai and Sons, New Delhi, 1984.
- 2. S.K. Sen, 'Principles of Electrical Machine Design with Computer Programmes', Oxford and International Book House Publishing Company Pvt Ltd., New Delhi, 1987.
- 3. G Warren, "Problems in Electrical Engineering", Parker and Smith Solutions, Newyork, 1940.
- 4. J. G. Jamnani, "Elements of electrical design' 2nd Edition, Mahajan publishing house.

REFERENCE BOOKS:

- 1. R.K. Agarwal, 'Principles of Electrical Machine Design', S.K.Kataria and Sons, Delhi, 2002.
- 2. V.N. Mittle and A. Mittle, 'Design of Electrical Machines', Standard Publications and Distributors, Delhi, 2002.
- 3. T. Stolarski, Y. Nakasone and S. Yoshimoto, "Engineering analysis with ANSYS software", Butterworth Heinemann Publisher, 2006.
- 4. K.G.Upadhyay, "Design of Electrical Machines", New age international publishers.

E REFERENCES :

- 1. Web Content http://www.library.dce.edu/e-resources/books/ee/
- 2. Web Course http://elearning.vtu.ac.in/

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus PO, PSO mapping

CO/ PO/PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	-	-	2	1	1	2	-	-	1	-	-	1	1
CO2	3	3	-	3	3	3	-	3	-	1	3	-	1	1
CO3	2	-	-	-	2	2	2	3	-	-	-	-	2	2
CO4	-	1	3	-	-	1	-	-	1	-	-	-	2	2
CO5	-	-	1	-	3	-	-	2	-	-	-	-	1	2
Total	7	4	4	5	9	7	4	8	1	2	3	0	7	8
Scaling	2	1	1	1	2	2	1	2	1	1	1	0	2	2

0 –No relation 1 – Low relation	2 – Medium relation 3 – High Relation
---------------------------------	---------------------------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

CONTROL AND MAINTENANCE OF ELECTRICAL MACHINES

Cours	se Outcomes(E12):	Domain	Level
CO1	<i>Recall</i> the functions and concepts of electrical maintenance	Cognitive	Remembering
	department.Name the tools required.		
CO2	List the various types of losses and compare with	Cognitive	Remembering
	heatproduced and its dissipationin the rotating machine.		Understanding
CO3	Name the various types of lubrication and lubricators and	Cognitive	Remembering
	choose the correct lubrication for various operations of		Remembering
	rotating machines.		
CO4	<i>Select</i> the motor for particular application and <i>demonstrate</i>	Cognitive	Applying
	thedifferent types of installation and trouble shootings.		Understanding
CO5	<i>Recall</i> the methods and procedure for domestic	Cognitive	Remembering
	installation. Compare the faults and ensure the		Understanding
	precautionsto avoid mishaps.		U

SUB CODE	SUB NAME	3	0	0	3			
E12	CONTROL AND MAINTENANCE OF ELECTRICAL							
C:P:A	CONTROL AND MAINTENANCE OF ELECTRICAL MACHINES	3	0	0	3			
2:0:0								
UNIT- I	PRINCIPLES AND PLANNING OF MAINTENANCE			6				
Introduction	n, Essentials of preventive maintenance programme, Functions o	f elect	rical m	ainte	nance			
department.	Tools required, loading and unloading of electrical machinery							
UNIT- II	HEATING AND COOLING OF ELECTRICAL MACHINI	ES			6			
Introduction, , Energy losses in electrical conductors, Energy losses in magnetic conductors, Energy								
losses in i	nsulating materials, Efficiency in electrical machines, Mode	es of	heat of	lissip	ation,			
Radiation,	Convection, Conduction, Causes of overheating, Ventilation	of ele	ctrical	macl	hines,			
transformer	cooling, Cooling of, Synchronous machines							
UNIT-III	LUBRICATION				6			
Introduction	n, Purpose of lubrication, Classification of lubricants, liquid	lubric	ants, S	Semi-	liquid			
lubricants,	Solid lubricants. Characteristics of lubricants, Viscosity, Vis	scosity	index	, Oil	iness,			
Specific gr	avity-flash point, fire point, freezing point or pour point,	Volati	lity. N	Ietho	ds of			
lubrication Ring oiling, Needle lubricator, Wick lubrication.								
UNIT-IV MOTORS 6								
Selection of motors, Storage pre installation check, Installation, Alignment, Connecting and starting,								
Pre commissioning checks, Drying out, Commissioning, Overhauling of motors, Preventive								
maintenance, Trouble shooting in electric motors, Maintenance schedule of synchronous machine								

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956 NAAC ACCREDITED

UNIT-V DOMESTIC INSTALLATIONS

Introduction, Testing the electrical installation of a building-testing of insulation resistance to earth, testing of insulation resistance between conductors, Continuity or open circuit test, Short circuit test, Testing of earth continuity path, polarity test, Localization of fault, IE Rules for domestic installations. Electric Fire, Precautions to avoid fire,

Lecture = 45; Tutorial = 00; Lab = 00; Total = 45 Hours

TEXT	BOOKS:
1.	SK Bhattacharya, "Electrical Machines", Tata Mc Graw Hill, New Delhi, 1998.
2.	Kenneth B. Rexford, "Electrical Control for Machnines", Delmar cengage leaning, November 22, 1996
3.	Frank D. Petruzella, "Electric Motors Control systems", McGraw Hill Education, May 2009.
REFEF	RENCE BOOKS:
1.	Nagrath and Kothari, "Electrical Machines", Tata McGraw Hill, New Delhi, 2010
2.	Diane Lobsiger, Peter Giuliani & Kenneth Rexford, "Electrical Control for Machines", 7 th edition, Delmar Cengage Learning, January 2015.
3.	JB Gupta, "Electrical and Electronics Engineering", S.K. Kataria&Sons, New Delhi, 2009.
4.	Philip Kiameh "Electrical Equipment Handbook: Troubleshooting and Maintenance" McGraw Hill Inc., New Delhi, 2003, ISBN: 9780071396035
E-REF	ERENCES:
1.	https://accessengineeringlibrary.com/browse/electrical-equipment-handbook- troubleshooting-and-maintenance

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	1	2	-	1	-	-	-	1	-	-	1	-	1
CO2	3	1	-	1	1	-	-	-	-	-	-	1	-	1
CO3	3	1	-	1	1	-	-	-	1	-	-	1	-	1
CO4	3	1	2	1	1	-	-	-	1	-	-	1	-	1
CO5	3	1	-	-	1	-	-	-	-	-	-	1	-	1
Total	15	5	4	3	5				3			5		5
Scaling	3	1	1	1	1				1			1		1

Table 1: COs versus POs mapping

6

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E13 ADVANCED CONTROL SYSTEM ENGINEERING

Cours	e Outcomes (E13)	Domain	Level	
CO1	Discuss to represent State space model and Describes Controllability & Observability of the systems.	Cognitive	Remembering	
CO2	Design the Non linear systems approach to system stability using Liapunov's and Popov's stability criteria	Cognitive	Creating	
CO3	Distinguish the time-optimal control problem and infinite time regulator problem.	Cognitive	Analyzing	
CO4	Choose appropriate dynamics for data extrapolation by using Z- Transfrom	Cognitive	Perception	
CO5	Describe the applications of non linear systems and their real-time implementation challenges	Cognitive	Remembering	

E 13 3 0 C D Advanced Control System Engineering J	3								
C D A Advanced Control System Engineering									
C F A Auvanced Control System Engineering L I F	Η								
3 0 0 3 0 0	3								
UNIT ISTATE VARIABLE ANALYSIS AND DESIGN0	9								
State models – solution of state equations- controllability and observability – pole assignment by state feedback – full and reduced order observers. Mathematical model of Electrical and mechanical system.									
UNIT II NONLINEAR SYSTEMS									
Common types of non-linear phenomena – construction of phase trajectories – system analysis	by								
phase plane method - describing function method - describing function of nonlinear elemen	ts –								
stability analysis by describing function method – Liapunov's and Popov's stability criteria.									
UNIT III OPTIMAL CONTROL 0	9								
Problem formulation – necessary conditions of optimality – state regulator problem – Matrix Ric	cati								
equation – infinite time regulator problem – output regulator and tracking problems – time-opti	mal								
control problem.									
UNIT IV DIGITAL CONTROL SYSTEM 0	9								
haracteristics of sampling - Data extrapolation - Review of Z transform theory - characteristic									
response of a sample and ZOH combination – stability analysis by mathematical tests and root locus									
diagrams – design using Root loci. Frequency response of DT system.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee @pmu.edu

 Web: www. pmu.edu

09

NAAC ACCREDITED

UNIT V ALGORITHM AND STRATEGY FOR COMPUTER CONTROL

Scaling data - linearization of input data - arithmetical operations and functions - integration - control law algorithm - PID control law - self-tuning strategy.

Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours

TEXT BOOKS

- 1. M. Goal, 'Digital Control and State Variable Methods', Tata McGraw-Hill, 1997.
- 2. Chessman, Wilson and Leila, 'Advanced Control System Technology', Viva-low priced edition, 1998.
- 3. Benjamin C. Kuo, "Digital Control Systems". Oxford University Press, 1992.
- 4. S. Majhi, Advanced Control Theory-Relay Feedback Approach, Cengage Asia/India Pvt.Ltd, 2009.

REFERENCE BOOKS

- 1. R.C.Dorf and R.H.Bishop, 'Modern Control Systems', Addison-Wesley, 1995. (MATLAB Reference)
- 2. Nagrath, I.J. and Gopal, M., 'Control System Engineering', Wiley Eastern, Reprint 1995
- 3. K. Ogata, "Modern Control Engineering" 2nd Edition, Prentice Hall India, New Delhi, 1992.
- 4. A. Johnson and H. Moradi, New Identifications and Design Methods, Springer -Verlag, 2005.

E-REFERENCES

1. NTPEL, Advanced Control Systems by Prof. Somanath Majhi, Department of Electronics & Electrical Engineering, IIT Guwahati.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee @pmu.edu
 Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	1	-	-	-	-	
CO2	2	1	2	2	-	-	-	-	-	1	-	2	-	-
CO3	1	3	-	3	1	-	2	3	-	1	1	-	2	1
CO4	2	2	-	1	1	1	-	-	2	2	-	1	1	-
CO5	2	1	1	1	-	-	-	-	-	-	2	-	1	1
Total	9	8	3	7	2	1	2	3	3	4	3	3	4	2
Scaling	2	2	1	2	1	1	1	1	1	1	1	1	1	1

0 -No relation1 - Low relation2 - Medium relation3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E14 DIGITAL LOGIC CIRCUITS

Cours	se Outcomes (E14)	Domain	Level
CO1	Name numerical values in various number systems and	Cognitive	Remembering
	show number conversions between different number	Psycomotor	Set
	systems.	5	
CO2	Explain Boolean functions and minimization techniques	Cognitive	Understanding
	using k -maps and postulates and theorems of Boolean		
	Algebra, minimization of Boolean functions using basic		
	laws.		
CO3	<i>Explain</i> logic gates and their applications and <i>construct</i>	Cognitive	Understanding
	and <i>verify</i> the logic gates and construct simple adders and	Psycomotor	Set
	sub tractors using logic gates. Able to <i>design</i> digital	Cognitive	Creating
	combinational circuits.	8	8
CO4	<i>Explain</i> sequential digital circuits like flip-flops,	Cognitive	Understanding
	registers, counters and <i>verify</i> the state tables of flip-flops	Psycomotor	Set
	using NAND and NOR gates.	-	
CO5	Explain the synchronous sequential circuits and	Cognitive	Understanding
	programmable logic devices.		

SUB CODE			SUB NAME	L	Т	Р	С	
	E14			3	0	0	3	
С	P	P A Digital Logic Circuits				Р	Η	
3	0	0		3	0	0	3	
U	NIT			10				
Nu	Number systems- base-2, 8, 10, 16 - Radix conversion - Alphanumeric codes - various codes -							
err	or de	tect	ion and correction.					
U	NIT	Π	BOOLEAN ALGEBRA AND MINIMIZATION TECHNIQUES	5		08		
Ba	sic I	Bool	ean functions - AND, OR NOT operations - postulates and the	oren	ns of	Boo	olean	
Alg	gebra	ι —	De-Morgan's laws - minimization of Boolean functions using ba	asic	laws	– sui	n of	
pro	duct	and	l product of sum forms – Minterms and Maxterms – K- map of sw	vitch	ing f	unctic	ons –	
mi	nimiz	zatio	on using K-map method and Quine –Mc Clusky method.					
UI	TIV	III	LOGIC CIRCUITS LOGIC FAMILIES AND COMBINATION	NAL		09		
Di	Digital Logic Families – introduction to RTL, DTL, TTL, ECL and MOS families and their							
characteristics – internal circuits of basic gates AND, OR, NOT and XOR using Bipolar, MOS and								
CN	CMOS families – Combinational logic and representation of logic functions – simplification and							
im	implementation of combinational logic circuits - multiplexer and demultiplexer - encoder and							
dec	coder	:-ac	lder- subtractor and magnitude comparators.					

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS UNIT IV 09 Sequential Logic - Flipflops SR, JK, D and T flip-flops - Analysis of synchronous sequential circuits - Memories. Counters - state diagram - state reduction and Assignment - Morre and Mealy model. AS SYNCHRONOUS SEQUENTIAL CIRCUITS AND UNIT V 09 **PROGRAMMABLE LOGIC DEVICES** As synchronous sequential logic circuits-transition table, flow table-race condition, hazard and error in digital circuits, analysis of As synchronous sequential logic circuits- Introduction to programmable logic devices, PROM-PLA-PAL. Application of gates by SAMA standards. Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours **TEXT BOOKS:** 1. Malvino and Leach, 'Digital Principles and Applications', McGraw Hill, 2001. 2. Moris Mano, 'Digital Design', Prentice Hall of India, 2000. 3. Rajakamal,"Digital system-Principle & Design",Pearson education 2nd edition 2007 4. Comer "Digital Logic & State Machine Design", Oxford 2012. **REFERENCE BOOKS:** 1. Taub and Schilling, 'Digital Integrated Circuits', McGraw Hill, 2002. 2. Millman, J. and Halkias, C.C., 'Integrated Electronics: Analog and Digital Circuits and Systems', McGraw Hill, Kogakusha Ltd., Tokyo, 2001.

- 3. Samuel C. Lee "Digital Circuits and Logic Designs" Prentice Hall of India; 2000
- 4. Fletcher, W.I., 'An Engineering Approach to Digital Design', Prentice Hall of India, 2002.
- 5. Anand kumar, Fundamental of Digital circuits, PHI 2003.

E-REFERENCES:

- 1. NPTEL, Digital Logic Circuits, Prof. S.Srinivasan, IIT Madras.
- 2. NPTEL, Digital Logic Circuits, Prof. D. Roychoudhury, **IIT Kharagpur**

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee @pmu.edu

 Web: www. pmu.edu

Total

Scale value _

_

COs versus POs mapping PO1 PO2 PO3 PO4 PO5 PO6 **PO7 PO8 PO9 PO10 PO11 PO12** PSO PSO **CO 1** _ -_ _ **CO 2** _ _ _ -**CO 3** _ -_ **CO**4 -_ _ _ **CO 5** _ -

0 – No relation	1 – Low relation	2 – Medium relation	3 – High Relation
-----------------	------------------	---------------------	-------------------

2015_OBE [B.Tech. (PT)]

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E16 INDUSTRIAL AUTOMATION

Course	Outcomes (E16)	Domain	Level
CO1	Able to <i>define</i> and Explain the fundamentals of Pneumatics,	Cognitive	Remembering
	hydraulics and electrical drives. <i>List</i> out the advantages, disadvantages and its application		Understanding
CO2	Apply the knowledge of electrical ladder diagrams for hydraulic and pneumatic system and able to <i>define</i> pressure, proximity switches and intelligent Relays.	Cognitive	Applying Remembering
CO3	Explain and Categorize different types of Sensors and their application. <i>List</i> out timer, counter and their application.	Cognitive	Understanding Analyzing Remembering
CO4	Illustrat e the knowledge in the PLC logic, Architecture and design the industrial automated system for specific applications and Apply the knowledge of PLC programming to interface pneumatics.	Cognitive	Understanding Creating Applying
CO5	Outline the overview of robotics and their application. Apply the knowledge of robotics programming	Cognitive	Understanding Applying

SUI	B.CO	DE	SUB NAME	L	Т	Р	С			
	E16			3	0	0	3			
С	Р	Α	Industrial Automation	L	Т	Р	Η			
2	0	0		3	0	0	3			
U	JNIT	Ι	INTRODUCTION TO PNEUMATICS AUTOMATION	09						
Intro	oduct	ion to	o Pneumatics- Overall structure- Electro pneumatic –hydraulics- O							
Adv	Advantages and disadvantages – Application-Electrical drives.									
U	NIT	II	APPLICATIONS OF RELAYS	09						
Esse	Essential qualities of relays- NO & NC contacts- Electrical signal storage - Electrical Ladder									
diag	gram	Pneu	matic system- Hydraulic system-pressure and proximity switches- Int	ellige	nt Re	elays.				
U	NIT I	Π	SMART SENSORS AND TIMERS IN CONTROLLERS		0	9				
Intro	oduct	ion to	o sensors- characteristics- types of sensors-resistive - inductive-cap	paciti	ve- r	nagn	etic-			
ultra	asonic	: - pho	otoelectric- nano sensors- timers-counters-types-applications.							
U	NIT I	[V	PROGRAMMABLE LOGIC CONTROLLERS		0	9				
Evo	lutior	of P	LC – Sequential and Programmable controllers – Architecture – Progra	mmir	g	of PI	- C –			
Rela	ay log	ic and	d Ladder logic – Functional blocks – PLC interface to pneumatics.							
U	NIT	V	ROBOTICS		0	9				
Intro	Introduction and overviews of Robotics – Terms and Definition, Historical development of robotics,									
classification and configuration of robots, Basic components - Drives, controller gripper, application-										
prog	programming in Robotics.									
	Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

TEXT BOOKS

- 1. James Dally, W., "Instrumentation for Engineering Measurements", John Wiley & sons
- 2. Patranabis, D., "Sensors and Transducers", Wheeler Publishing, 2000.
- 3. Harry Colestock, Industrial Robotics, McGraw Hill Book Co., New Delhi, 2005.
- 4. Harry Colestock, Industrial Robotics, McGraw Hill Book Co., New Delhi, 2005.

REFERENCE BOOKS

- 1. Anthony Esposito, Fluid Power with Applications, Pearson Education, 5th Edition, New Delhi, 2000.
- 2. Stuart A. Boyer., SCADA: Supervisory Control and Data Acquisition, 3rdEdition, The instrumentation systems and Automation Society, 2009.
- 3. Micro-sensors; principles and applications-J.W.Gardner.
- 4. Semiconductor sensors and its application-S.M.Sze.

E REFERENCES

- 1. NPTEL- Industrial automation, Prof. S. Mukhopadhyay IIT Kharagpur.
- 2. Web Course http://elearning.vtu.ac.in/

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

COs versus PO, PSO mapping

CO/ PO/PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	-	2	1	1	1	-	-	1	1	-	2	1
CO2	3	2	-	-	1	1	-	1	-	1	3	2	2	1
CO3	2	3	-	-	1	1	1	-	-	-	-	1	2	1
CO4	2	1	3	-	-	1	-	1	1	-	-	1	-	2
CO5	2	2		-	1	-	-	2	-	-	-	1	-	2
Total	12	10	3	2	4	4	2	4	1	2	4	5	6	7
Scaling	3	2	1	1	1	1	1	1	1	1	1	0	2	2

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

BIO MEDICAL INSTRUMENTATION

Cours	se Outcomes(E17):	Domain	Level
CO1	<i>Identify</i> the origin of bio-potentials and various bioelectric	Cognitive	Applying
	signals that are recorded routinely in modern clinical		
	practice .		
CO2	<i>Explain</i> the various techniques of measuring blood flow,	Cognitive	Understanding
	pressure & volume.		
CO3	Describe and apply the safety issues, safe design, and safe	Cognitive	Remembering
	use of medical instrumentation, specifically electrical		
	safety.		
CO4	<i>Choose</i> the appropriate amplifier and fileters for medical	Cognitive	Applying
	instrumentation.		
CO5	<i>Describe</i> the parameters constraining the resolution of CT,	Cognitive	Remembering
	MRI & Ultrasound image.		

SUB CODE	SUB NAME	L	Т	Р	С						
E17		3	0	0	3						
C:P:A	BIO MEDICAL INSTRUMENTATION	BIO MEDICAL INSTRUMENTATION L T									
3:0:0		3 0									
UNIT-I	T-I HUMAN SYSTEM AND BIO POTENTIAL ELECTRODES										
Different types of human system, origin of bio-potential and its propagation. Electrode-electrolyte											
interface, electrode-skin interface, half cell potential, Types of electrode, PH electrode, Recording											
problems, measurement with two electrodes - human cell structure.											
UNIT-II ELECTRODE CONFIGURATION											
Bio signals	characteristics - frequency & amplitude ranges. ECG - Enthove	n's tria	ngle, s	standa	rd 12						
load system	, PQPs waveform. EEG - 10-20 electrode system, brain waves, a	recordi	ng seti	up of	EEG,						
EMG, ERG	, and EOG – unipolar and bipolar mode.										
UNIT-III	BIO AMPLIFIER AND TRANSDUCER			9							
Need for 1	Bio –amplifier, power amplifier, isolation amplifier, feedbac	ek amp	olifier.	Resi	stive,						
Inductive, C	Capacitive transducer and application, Fibre optic, photoelectric t	ransdu	cer – c	lescri	ption,						
features app	blicable for biomedical instrumentation										
UNIT-IV CARDIAC MEASUREMENTS											
Blood pres	ssure measurement – blood flow measurement – phonor	cardiog	raphy	- 1	vector						
cardiograph	cardiography. Heart lung machine –ventilator – Anesthetic machine – cardiac pacemaker -										
defibrillator	defibrillator patient safety - electrical shock hazards.										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT-	V MEDICAL DIAGNOSTICS INSTRUMENTS AND SYSTEMS	9							
CT scar	ner - MRI Scan and Ultrasonic scanner -X Ray - Laser Equipment and application	ation- bio-							
telemetr	y Kidney dialysis machine – electron microscope – blood cell counter- Endoscopy								
	Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours								
TEXT BOOKS:									
1.	Khandpur, R.S., 'Handbook of Biomedical Instrumentation', Tata McGraw Hill, 2	007.							
2.	ArumugamM.,'Bio Medical Instrumentation', Anuradha agencies Pub., 2012.								
3	C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical								
5.	Instrumentation', Universities press (India) Ltd, Orient Longman ltd, 2008.								
4.	4. J. Webster, 'Medical Instrumentation', John Wiley & Sons, 2003.								
REFER	ENCE BOOKS:								
1.	Geddes L.A., and Baker, L.E., 'Principles of Applied Bio-medical Instrument Edition, John Wiley and Sons, 2011.	ation', 3rd							
2.	Cromwell, Weibell and Pfeiffer, 'Biomedical Instrumentation and Meas 2 nd Edition, Prentice Hall of India, 2014.	urements',							
3.	Tompkins W.J., Biomedical Digital Signal Processing, Prentice Hall of India, 200)8.							
4.	J. Wilson, J.F.B. Hawkes, 'Laser Principles and Applications', (Prentice-Hall, N (2006)	ew York),							
E-REF	E-REFERENCES:								

1. http://nptel.ac.in/courses/Webcourse-contents/IIT-Delhi/Bio medical instrumentation

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	2			2	1							2	1	1
CO 2	3	2	2	2	2							1	1	1
CO 3	2		2			2						1	1	1
CO 4	2	2		2		2						1	1	2
CO 5	2	2				2						1	1	2
Total	11	6	4	6	3	6	0	0	0	0	0	6	5	7
Scaled to 0,1,2,3 scale	3	2	1	2	1	2	0	0	0	0	0	2	1	1

0 –No relation 1 – Low relation 2 – Medium relation 3 – High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E18 SMART GRIDS

Cours	e Outcomes (E18)	Domain	Level
CO1	<i>Explain</i> the paradigm shift between traditional power transmission and distribution and smart power grids verbally and in writing.	Cognitive	understanding
CO2	<i>List</i> and <i>illustrate</i> drivers, challenges and benefits to the integration of renewable and distributed generation into large power grids.	Cognitive	Remembering Understanding
CO3	Describe and <i>assess</i> smart grid technologies that enhance transmission and distribution systems.	Cognitive	Evaluating
CO4	<i>Appraise</i> current implementations of smart grid technologies and/or policies using regional data sources.	Cognitive	Evaluating
CO5	<i>Take part in</i> project teams using appropriate communication skills in order to present information about smart grid industry practices and community engagement.	Cognitive	Analyzing

SUB.C	ODE	SUB NAME	L	Т	Р	C		
EE 1	18		3	0	0	3		
C P	Α	Smart Grids	L	Т	Р	Η		
3 0	0		3	0	0	3		
UNI	ГΙ	INTRODUCTION TO SMART GRID				09		
Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid functions,								
opportunities, challenges and benefits, Difference between conventional & Smart Grid, Concept								
of Resi	lient 8	z Self-Healing Grid, Present development & International policies in S	Smart	Grid	, Div	verse		
perspect	ives fr	om experts and global Smart Grid initiatives						
UNIT IISMART GRID TECHNOLOGIES09								
Smart e	nergy	resources, Smart substations, Substation Automation, Feeder Automation	tion	,Tran	smis	sion		
systems	EMS:	S, FACTS and HVDC, Wide area monitoring, Protection and co	ontrol	, Dis	stribu	ition		
systems	: DM	S, Volt/VAr control, Fault Detection, Isolation and service re	storat	tion,	Ou	itage		
manage	ment,H	ligh-Efficiency Distribution Transformers, Phase Shifting Transforme	rs, P	lug i	n Hy	vbrid		
Electric	Vehic	es (PHEV)						
UNIT	III	SMART METERS AND ADVANCED METERING INFRASTRU	CTU	RE		09		
Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI								
protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU),								
Intellige	nt Ele	ctronic Devices(IED) & their application for monitoring & protection	n.					

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

09

NAAC ACCREDITED

UNIT IV POWER QUALITY MANAGEMENT IN SMART GRID

Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

UNIT V HIGH PERFORMANCE COMPUTING FOR SMART GRID APPLICATIONS 09

Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing to make Smart Grids smarter, Cyber Security for Smart Grid.

Lecture = 45; Tutorial = 0; Total = 45 Hours

TEXT BOOKS

- 1. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley
- 2. Stuart Borlase "Smart Grid : Infrastructure, Technology and Solutions", CRC Press 2012.
- 3. Yang Xiao, Communication and Networking in Smart Grids, CRC press, 2012

REFERENCE BOOKS

- 1. NouredineHadjsaïd and Jean-Claude SabonnadièreSmart, SmartGrids, ISTE Ltd. 2012.
- 2. Vehbi C. Güngör, DilanSahin, TaskinKocak, SalihErgüt, ConcettinaBuccella, Carlo Cecati, and Gerhard P. Hancke, Smart Grid Technologies: Communication Technologies and Standards IEEE Transactions On Industrial Informatics, Vol. 7, No. 4, November 2011.
- 3. Xi Fang, SatyajayantMisra, GuoliangXue, and Dejun Yang "Smart Grid The New and Improved Power Grid: A Survey", IEEE Transaction on Smart Grids.

E REFERENCES

- 1. https://iit.edu/news/iittoday/?tag=smart-grid
- 2. https://www.smartgrid.gov/the_smart_grid/

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

COs versus PO, PSO mapping

CO/ PO/PS O	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	1	1	2	-	2	-	3	-	1	1	-	-	1	1
CO2	-	-	-	1	-	-	-	-	2	1	2	-	1	1
CO3	1	-	-	-	1	-	-	-	-	-	-	-	1	2
CO4	-	-	2	2	-	-	-	-	2	1	2	-	1	1
CO5	-	-	-	-	-	-	3	-	3	2	1	-	1	2
Total	2	1	4	3	3	0	6	0	8	5	5	0	5	7
Scalin g	1	1	1	1	1	0	2	0	2	1	1	0	1	2

0 -No relation1 - Low relation2 - Medium relation3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

NAAC ACCREDITED

POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS

Cours	se Outcomes(E21):	Domain	Level
CO1	Explain the fundamentals of renewable energy systems and	Cognitive	Understanding
	government support on developing new technology for		
	Renewable Energy Systems.		
CO2	Illustrate the operation of various electrical machines	Cognitive	Understanding
	onrenewable energy conversion system.		
CO3	Categorize the different types of power converters used	Cognitive	Analyzing
	for renewable energy conversion.		
CO4	Construct the Grid connected solar and wind power	Cognitive	Applying
	generation systems.		
CO5	Find the need of hybrid system and Recall the power	Cognitive	Remembering
	conversion and storage systems.		

Sub. Code	Sub Nome	L	Т	P	С			
E21	Sub. Ivame	3	0	0	3			
C:P:A	POWER ELECTRONICS FOR	L	Т	Р	Н			
3:0:0	RENEWABLE ENERGY SYSTEMS	3	0	0	3			
UNIT- I	INTRODUCTION TO ENERGY			1	0			
Trends in energy consumption - World energy scenario - Energy source and their availability – Conventional and renewable sources - Need to develop new energy technologies- MNRE Rules and Regulations-TEDA-Wind and solar survey in India and World.								
UNIT-II	ELECTRICAL MACHINES FOR EENERGY CONVERSION	RENEV	WABL	8	8			
Review of reference t	heory fundamentals-principle of operation and a	analysis	:Induct	ion Gei	nerator			
(IG),Permanent Magn and Doubly Fed Indu	et Synchronous Generator (PMSG), squirrel cag ction Generator (DFIG).	e induct	tion gen	erator (SCIG)			
UNIT- III	UNIT- III POWER CONVERTERS 10							
Solar: Block diagram of solar photo voltaic system, line commutated converters (inversion-mode) - Maximum power point tracking – Applications – Water pumping – Street lighting, battery sizing, array sizing. Wind: three phase AC voltage controllers-AC-DC-AC converters, Grid Interactive								

Inverters-matrix converters.

UNIT-IV ANALYSIS OF WIND AND PV SYSTEMS

8

Standalone operation affixed and variable speed wind energy conversion systems and solar energy conversion system based on PV system -Inter connections with Grid - Power conditioning schemes.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT-	V	HYBRID RENEWABLE ENERGY SYSTEMS	9		
Need for H	Hybrid	Systems- Range and type of Hybrid systems- Case studies of W	ind-PV- Power		
converters	for dist	tributed power systems- Storage - Reliability evolution			
		Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours			
TEXT BO	OKS:				
1.	S. R Conv	Rao and Parulekar, Energy Technology – Non Conventional, F ventional, New Delhi, Khanna Publishers, 1999.	Renewable and		
2.	LLC, 1999.				
3.	cs: Converters,				
4. S.N.Bhadra,D.Kastha,&S.Banerjee "WindElectrical systems",OxfordUniversity Press,2009					
REFEREN	NCE B	OOKS:			
1.	Rasl	nid.M.H "power electronicsHandbook",Academicpress, 2001.			
2.	Rai.	G.D, "Nonconventional energysources", Khannapublishes, 1993			
3.	Gray	v,L.Johnson,"Windenergysystem",prenticehall linc, 1995.			
E REFER	ENCE	S:			
1.	<i>Lectu</i> Electi	re Series on <i>Energy Resources & Technology</i> by Prof. S.Banerjee, rical Engineering, IIT Kharagpur	Department of		
2.	Veb Course by				

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	P 0 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	2	3	1	0	2	0	1	0	0	0	0	0	3	0
CO 2	3	1	0	0	2	0	1	0	0	0	0	0	1	1
CO 3	1	2	3	0	1	0	0	1	0	0	0	0	3	2
CO 4	0	2	0	0	3	0	1	0	0	0	0	0	2	2
CO 5	3	1	1	0	0	2	1	1	0	0	0	1	2	1
Total	9	9	5	0	8	2	4	2	0	0	0	1	11	6
Scaling	2	2	1	0	2	1	1	1	0	0	0	1	3	2

3-High Relation, 2-Medium Relation, 1-Low Relation, 0-No Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

WIND ENERGY CONVERSION SYSTEMS

Cours	se Outcomes(E22):	Domain	Level
CO1	<i>Illustrate</i> the components, schemes, power obtained and power Coefficient of wind turbine.	Cognitive	Understanding
CO2	<i>Explain</i> and <i>design</i> the different methods of wind turbines.	Cognitive	Understanding Creating
CO3	<i>Classify</i> types of fixed speed systems and <i>design</i> procedure of each part of the fixed speed systems.	Cognitive	Understanding Creating
CO4	<i>Explain</i> the variable speed systems and the power – wind speed characteristics of variable speed system.	Cognitive	Understanding
CO5	<i>Classify</i> and <i>explain</i> the different techniques of gridnected systems.	Cognitive	Understanding Understanding

SUB	SUB NAME	т	т	р	C					
CODE	SOBIVAME	L	I	I	C					
EE 22		3	0	0	3					
C:P:A	WIND ENERGY CONVERSION SYSTEMS	L	Т	Р	Η					
3:0:0		3	0	0	3					
UNIT- I	INTRODUCTION			9						
Components of WECS-WECS schemes-Power obtained from wind-simple momentum theory-										
Power coefficient-Sabinin's theory-Aerodynamics of Wind turbine.										
UNIT- II WIND TURBINES										
HAWT-VA	HAWT-VAWT-Power developed-Thrust-Efficiency-Rotor selection-Rotor design considerations-									
Tip speed	ratio-No. of Blades-Blade profile-Power Regulation-yaw cont	rol-Pito	ch angl	le con	trol-					
stall contro	l-Schemes for maximum power extraction.									
UNIT-III	FIXED SPEED SYSTEMS			9						
Generating	g Systems- Constant speed constant frequency systems -	Choice	of G	lenera	tors-					
Deciding	factors-Synchronous Generator-Squirrel Cage Inductio	n Gene	erator-	Mod	el of					
Wind Spee	ed-Model wind turbine rotor - Drive Train model- Generator model-	del for	Steady	y state	e and					
Transient s	stability analysis.									
UNIT-IV VARIABLE SPEED SYSTEMS										
Need of	Need of variable speed systems-Power-wind speed characteristics-Variable speed constant									
frequency systems synchronous generator- DFIG- PMSG -Variable speed generators modelling-										
Variable s	peed variable frequency schemes.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

NAAC ACCREDITED

UNIT	- V GRID CONNECTED SYSTEMS			9					
Wind interconnection requirements, low-voltage ride through (LVRT), ramp rate limitations, and supply of ancillary services for frequency and voltage control, current practices and industry trends wind interconnection impaction steady-state and dynamic performance of the power system including modellingissue.									
		LECTURE TUTORIAL TO							
		45	0	45					
TEXT	BOOKS:								
1.	L.L.Freris"WindEnergyconversionSystems",PrenticeHall,2000								
2.	S.N.Bhadra, D.Kastha,S.Banerjee, "Wind Electrical Sytems", Oxford University Press, 2010.								
REFE	RENCE BOOKS:								
1.	IonBoldea, "Variablespeedgenerators", Taylor & Fi	rancisgroup,20)06.						
2.	E.W.Golding "Thegeneration of Electricity by wards Trowbridge, 2001.	indpower",Re	dwoodburn Ltd.,	,					
3.	N.Jenkins,"Wind Energy Technology" JohnWiley	y&Sons,2001							
4.	S.Heir "Grid Integration of WECS", Wiley 2001.								
E REF	FERENCES :								
1.	NPTEL, Wind energy conversion, Prof. Shireesh. B, Kedre, IIT Bombay								
2.	NPTEL, Wind energy conversion, Prof. S. Banerjee, IIT Kharagpur								

COs versus PO, PSO mapping

CO/ PO/PS O	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	2	-	1	1	-	-	-	-	-	-	-	2	1
CO2	3	2	1	2	2	-	-	-	-	-	-	-	2	1
CO3	2	1	-	1	2	-	-	-	1	-	1	-	1	1
CO4	2	2	1	2	1	-	-	-	-	-	-	-	2	1
CO5	2	2	-	1	2	-	-	-	-	-	-	-	1	2
Total	11	09	02	7	8	0	0	0	01	0	01	0	09	06
Scaling	3	2	1	2	2	0	0	0	1	0	1	0	2	2

0 -No relation 1 - Low relation 2 - Medium relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www.pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956

NAAC ACCREDITED

POLLUTION PERFORMANCE ANALYSIS OF ELECTRICAL SYSTEMS

Cours	se Outcomes(E23):	Domain	Level
CO1	<i>Explain</i> the different pollution testing mechanism and	Cognitive	Understanding
	causes for insulators failures.		
CO2	<i>Explain</i> the performance of insulator, surge diverter and	Cognitive	Understanding
	indoor <i>Explain</i> the performance of insulator, surge diverter		
	and indoor.		
CO3	Show the effect of pollution and the protective	Cognitive	Remembering
	characteristics of gap and gapless arresters.		
CO4	Outline protective characteristics of gap and gapless	Cognitive	Understanding
	arresters. <i>Develop</i> the modeling of surge diverter.		Applying
CO5	Show the pollution performance of the indoor switchgear,	Cognitive	Understanding
	organic insulator.		

SUBCODE	SUB NAME	L	Т	Р	С				
E23	Pollution performance analysis of Electrical Systems	3	0	0	3				
C:P:A		L	Т	Р	Η				
3:0:0		3	0	0	3				
UNIT-I INTRODUCTION 0									
Fundamental pro	cess of pollution flashover- Causes of failure in insulators-d	evelo	oment	and	effect				
of contaminatio	n layer - creepage distance-pollution conductivity-med	chanis	m of	poll	ution				
flashover-analyt	ical determination of flash over voltage.								
UNIT-II	POLLUTIONTESTING				09				
Artificial polluti	on testing - salt - fog method - solid layer method-mon	toring	of p	arame	eters-				
measurement of	layer conductivity-field testing methods.								
UNIT-III	POLLUTIONPERFORMANCEOFINSULATORS				09				
Ceramic and no	on-ceramic insulators-mitigation of pollution induced flash	over	-desig	gn of	shed				
profiles-rib facto	or effect in AC and DC insulators-modeling.								
UNIT-IV POLLUTIONPERFORMANCEOFSURGEDIVERTERS 0									
External insulation	on-effect of pollution on the protective characteristic so gap a	nd gaj	pless a	rreste	ers-				
modeling of surge diverters under polluted conditions.									

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

UNIT-V POLITION PERFORMANCE OF INDOOR FOURPMENT

UNIT-V POLLUTION PERFORMANCE OF INDOOR EQUIPMENT 0									
Cond	ensation and contamination of indoor switch g	gear – perf	ormance of orga	nic insulator					
under	polluted conditions – accelerated testing tech	niques.							
		15	Δ	15					
		45	U	45					
TEX	TBOOKS	<u> </u>							
1.	Kuffel,E.,Zaengl,W.S.andKuffelJ.,"HighVol	tageEngin	eeringFundamer	ntals",Elsvier					
	IndiaPvt.Ltd,2005.		-						
2.	Ragaller, "SurgesinHighKlaus VoltageNetworks", PlenumPress, New York, 1980.								
3.	Looms, J.S.T., "Insulators for HighVoltages". Peter Peregrinus. Ltd., London, 1988.								
REF	ERENCE BOOKS		~						
1.	DieterKindandKurtFeser,"HighVoltageTest7	Techniques	s",SecondEditior	n,SBAElectrical	1				
	EngineeringSeries,New Delhi,1999.								
2.	2. Ravi S.Gorur, "Outdoor Insulators", Inc. Ph	oenix,Ariz	20na85044,USA,	1999					
E-RE	FERENCES								
1.	E-learning course on Design and Testing	on powe	r apparatus , D	r.R.Sarathi, IIT	Г-				
	Chennai	*							

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PS O 2
CO 1	1	3		1				2		1		2	2	3
CO 2	1				1						1	1	2	3
CO 3	1		1				1			1		1	2	1
CO 4	1	2										1	2	3
Total	4	5				1			1	2		6	10	10
Scaling	1	1	1	1	1	1	1	2	1	1	1	2	2	2

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E24 RENEWABLE ENERGY TECHNOLOGY

Cours	e Outcomes (E24)	Domain	Level
CO1	Infers the Power Demand and identifies the various	Cognitive	Understanding
	renewable energy systems to meet out the demand.		Applying
CO2	Explains about the Performance of various solar	Cognitive	Understanding
	collectors and <i>apply</i> the recent advancement in PV		Applying
	systems to improve the efficiency.		
CO3	<i>Explain about</i> the performance characteristics of wind	Cognitive	Understanding
	energy and its application in hybrid systems.		
CO4	Apply the Bio-energy in various conversion	Cognitive	Applying
	technologies and processes, for sustainable		
	development.		
CO5	<i>Compares</i> the role-play of various energy resources.	Cognitive	Understanding

SU	B.CO	DE	SUB NAME	L	Т	Р	С			
	E24			3	0	0	3			
С	Р	Α	Renewable Energy Technology	L	Т	Р	Η			
3	0	0		3	0	0	3			
UNIT I INTRODUCTION										
Primary energy sources, Renewable Vs non-renewable primary energy sources, Renewable energy										
reso	resources in India, Current usage of renewable energy sources in India, future potential of									
rene	renewable energy in power production and development of renewable energy technologies.									
UNIT IISOLAR ENERGY09										
Sol	ar Ra	adiati	on and its measurements, Solar Thermal Energy Convers	ion fro	om	Flat-	plate			
Sol	ar C	ollec	tors, Concentrating Collectors and its Types, Efficient	cy and	d perfe	ormar	nce of			
coll	ector	s, Di	rect Solar Electricity Conversion from Photovoltaics- types	s of so	olar ce	ells an	nd its			
app	licati	on of	battery charger, Recent Advances in PV Applications- B	uilding	Integ	grated	PV,			
Gri	d Co	nnect	ed PV Systems.							
U	NIT I	III	WIND ENERGY			()9			
Win	nd en	nergy	principles, wind site and its resource assessment, wi	nd ass	sessme	nt, Fa	actors			
influencing wind, wind turbine components, wind energy conversion systems(WECS),										
Cla	Classification of WECS devices, Hybrid systems - safety and environmental aspects, economic									
asp	ects.									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

UNIT IV BIO-ENERGY

Energy from biomass, Principle of biomass conversion technologies process and their classification, Bio gas generation, types of biogas plants, selection of site for biogas plant, classification of biogas plants, Advantage and disadvantages of biogas generation, biomass gasifies, Application of biomass and biogas plants and their economics.

UNIT V OTHER TYPES OF ENERGY

09

09

Energy conversion from Hydrogen and Fuel cells, Geo thermal energy Resources, Potential in India. Tidal and wave energy.

Lecture = 45; Tutorial = 00; Total = 45 Hours

TEXT BOOKS

- 1. G.D. Rai, Non-Conventional Energy Sources- Khanna Publishers.
- 2. Twidell & Wier, Renewable Energy Resources –CRC Press (Taylor & Francis).
- 3. D.P.Kothari, K.C.Singha, Renewable energy sources and emerging technologies P.H.I
- 4. Mukund R.Patel, 1999.Wind And Solar Power Systems- CRC Press ,Florida,

REFERENCE BOOKS

- 1. Tiwari and Ghosal Narosa- Renewable energy resources,
- 2. Ramesh & Kumar ,Narosa -Renewable Energy Technologies ,
- 3. K Mittal ,Wheeler, Non-Conventional Energy Systems ,
- 4. Volker Quaschning , 2005-Understanding the Renewable Energy Systems,- Earth Scan,London,UK,

E-REFERENCES

- http://www.nptelvideos.in/2012/11/energy-resources-and-technology.html NPTEL, Lecture Series on Energy Resources and Technology, Prof.S.Banerjee,Department of Electrical Engineering, IIT Kharagpur.
- http://freevideolectures.com/Course/2352/Power-System-Generation-Transmission-and-Distribution/6

NPTEL, Renewable Energy Technology, Prof. D.P.Kothari IIT Delhi Course.

3. http://textofvideo.nptel.iitm.ac.in/112105051/lec43.pdfNPTEL, Renewable Energy Technology,Prof. V. V. Satyamurty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

COs versus PO, PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO 1	2	2			1		3	1	1	1	0	1	2	3
CO 2	2	2	2	2			2	1	1	1	2	1	2	3
CO 3	3	3												3
CO 4	3	2	2		3		3	1	1	1		1	2	3
CO 5		2											2	3
Total	10	11	4	2	4	0	8	3	3	3	2	3	8	15
Scaled to 0,1,2,3 scale	2	3	1	1	2	0	2	1	1	1	1	1	2	3

0 -No relation 1 - Low relation 2 - Medium relation 3 - High Relation

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E25 ELECTRICAL POWER QUALITY

Cours	e Outcomes (E25)	Domain	Level
CO1	<i>Infer</i> the electrical power quality terms, power quality events and causes for reduction in power quality.	Cognitive	Understanding
CO2	<i>Analyse</i> the voltage sag performance, mitigation of sag and effects on drives	Cognitive	Analyzing
CO3	<i>Find</i> the harmonics sources from commercial and industrial load. <i>Interpret</i> the Effect of harmonics and controlling harmonic distortion.	Cognitive	Remembering Understanding
CO4	<i>Construct</i> a Filter circuit for harmonics and power factor improvement. <i>Compare</i> the VAR compensators-SVC and STATCOM	Cognitive	Applying Understanding
CO5	<i>Inference a</i> mathematical simulation tools for monitoring and diagnostic techniques for various power quality power quality problems and Quality measurement equipment.	Cognitive	Analyzing

SU	SUB.CODESUB NAMELTP												
	E25			3	0	0	3						
С	Р	Α	Electrical Power Quality	Electrical Power QualityLTP									
3	0	0		3 0 0									
UNIT I INTRODUCTION													
Definition of Electric Power Quality- Description of poor power quality events. Pow													
Qual	ity pho	enome	na – Basic terminologies – various events in Power Quality	y – Cau	ises fo	r redu	uction						
in Power Quality — Power Quality Standards and power quality strategy.													
UNIT II VOLTAGE SAG													
	Sou	irces c	f sags - estimating voltage sag performance, sag severiti	es – v	oltage	sag c	lue to						
induc	ction r	notor	starting - mitigation of voltage sags - effect on adjustable	AC D	rives,	DC d	rives,						
comp	outers	and co	onsumer electronics										
UNI	г ш	HAI	RMONICS				09						
	Har	monic	sources from commercial and industrial loads, locating h	armoni	c sour	ces. I	Power						
syste	m res	ponse	characteristics - Harmonics Vs transients. Effect of har	monics	s - ev	aluati	on of						
Harn	nonic o	distort	ion - devices for controlling harmonic distortion										
UNIT IVFILTERING AND POWER FACTOR IMPROVEMENT0													
Powe	er fact	or im	provement- Passive Compensation. Passive Filtering Activ	ve Ha	rmonic	: Filt	ering-						
Shunt Injection Filter for single phase, three-phase three-wire and three-phase four-wire system													
static	· VAR	comp	ensators-SVC and STATCOM										

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

09

UNIT V POWER QUALITY MONITORING

Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – Quality measurement equipment - harmonic / flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring

Lecture = 45; Tutorial = 0; Lab = 0; Total = 45 Hours

TEXT BOOKS

- 1. Roger. C. Dugan, Mark. F. McGranagham, Surya Santoso, H.WayneBeaty, "Electrical Power Systems Quality" McGraw Hill,2003
- 2. C. Sankaran, "Power Quality" CRC Press, 2002.
- 3. Alexander Kusko "Power Quality in Electrical Systems" The McGraw-Hill Companies, Inc, 2007.
- 4. Ewald F. Fuchs and Mohammad A.S. Masoum" Power Quality in Power Systems and Electrical Machines", 2011

REFERENCE BOOKS

- 1. Silvester and Ferrari, "Finite for Electrical Engineers", Cambridge University Press, 1983
- 2. S.R.H.Hoole, Computer Aided, Analysis and Design of Electromagnetic Devices, Elsevier, New York, Amsterdam, London, 1989
- 3. D.A.Lowther and P.P Silvester, "Computer Aided Design in Magnetics", Springer Verlag, New York, 1956

E-REFERENCES

1. http://www.copper.org/applications/electrical/pq/issues.html

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

COs versus POs mapping

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	1	3	1	1	-	1	-	1	1	-	1	3	2
CO2	3	3	1	2	1	-	1	-	-	1	-	1	1	-
CO3	3	2	1	1	1	-	1	-	1	-	-	1	2	1
CO4	3	2	1	2	1	-	1	-	1	-	-	1	1	1
CO5	2	1	1	-	1	-	1	-	-	-	-	1	2	1
Total	14	9	7	6	5	-	5		3	2		5	9	5
Scalin g	3	2	2	2	1		1		1	1		1	2	1

0 –No relation 1	- Low relation	2 – Medium relation 3	3 – High Relation
------------------	----------------	-----------------------	--------------------------

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

MICRO PROCESSORS AND MICROCONTROLLERS

Cours	se Outcomes (E 26)	Domain	Level
CO1	To <i>understand</i> the architecture and basic concepts of 8085 microprocessor.	Cognitive	Understanding
CO2	To <i>understand</i> the memory organization, flags, stack, and special function registers, I/O ports, connecting external memory, counters and timers, serial data I/O, Interrupts present in 8051 microcontroller.	Cognitive	Understanding
CO3	To <i>understand</i> the 8051 Microcontroller instructions to <i>develop</i> and <i>show</i> assembly language programs for basic logical and arithmetic operations, by using jump and call instructions.	Cognitive Psychomotor	Understanding Applying Set
CO4	To <i>identify</i> timer and counter programming, Interrupt programming and <i>show</i> the I/O interfacing techniques with 8051 microcontroller.	Cognitive Psychomotor	Applying Set
CO5	To design and test assembly language program in 8051 microcontroller for displaying Waveform generation, speed control of DC motor, Stepper motor control, seven segments LED display	Cognitive Psychomotor	Creating Mechanism

SUB	6. CO	DE	SUB NAME	L	Т	Р	С						
	E 26			3	0	0	3						
С	P	Α	Micro Processors and Microcontrollers	L	Т	Р	Η						
3	1	0	3 0										
UNI			09										
Arch	nitectu	ire – İ	Instruction format addressing modes – Basic timing diagram	n – inp	out/out	put –	8085						
base	d sim	ple pr	ograms.										
UNIT II 8051 MICROCONTROLLER ARCHITECTURE													
8051	arch	itectu	re, memory organization, flags, stack, and special function 1	register	s,	I/O p	orts -						
conn	nectin	g exte	rnal memory, counters and timers, serial data I/O, Interrupts										
UNI	TIII		8051 MICROCONTROLLER INSTRUCTION ADDRESSING MODES	S.	AND	()9						
Mici	rocon	troller	instructions - addressing modes, moving data, logical	opera	tions,	arith	metic						
operations, jump and call instructions – subroutines - Interrupts and returns.													
TINI	ти	,	MICROCONTROLLER PROGRAMMING		AND		no						
UNI			INTERFACING BASICS				J <i>7</i>						
Micı	rocon	troller	programming - Assembly Language Programming, timer an	d coun	ter pro	gram	ming,						
conn	connection to RS 232 and RS 485, Interrupt programming												

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

NAAC ACCREDITED

UNIT V

INTERFACING PERIPHERALS AND MICROCONTROLLER **APPLICATIONS**

09

Serial and parallel I/O (8251 and 8255), Programmable DMA controller, Programmable interrupt controller, ADC/DAC interfacing. Programming concepts Regarding Waveform generation, speed control of DC motor, Stepper motor control, seven segments LED display.

Lecture = 45; Lab = 0; Total = 45 Hours

TEXT BOOKS

- 1. Ramesh .S. Gaonkar, 'Microprocessor architecture, Programming and its applications with the 8085' Penram International Publications (India), 4thEdition,2000
- 2. N.Senthilkumar, M.Saravanan, S.Jeevananthan'Microprocessors and microcontroller', Oxford university press, 2010
- 3. Kenneth Ayala, 'The 8051 Microcontroller', Cengage Learning Publications, 3rd Edition, 2007.
- 4. Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay 'The 8051 Microcontroller and Embedded Systems using Assembly and C', Prentice Hall Publications, 2nd Edition, 2008.

REFERENCE BOOKS

- 1. Ray A. K., Bhurchandi K. M., 'Advanced Microprocessor and Peripherals', Tata McGraw-Hill Publications, 3 r d E d i t i o n , 2013.
- 2. Sencer Yeralan, Helen Emery, 'Programming and interfacing the 8051 Microcontroller', Addison-Wesley Publications, 1st Edition, 2000.
- 3. Krishna Kant, 'Microprocessors and Microcontrollers, Architecture, Programming and System Design-8085, 8086, 8051, 8096', Prentice Hall India Ltd Publications, 1st Edition, 2010.
- 4. Douglas. V. Hall Microprocessors and Interfacing Tata McGraw Hill- Revised 2nd edition, 2006

E-REFERENCES:

NTPEL, Microprocessor (Web Course), Prof. S.P.Da, IIT Kharagpur.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

COs versus POs mapping

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	1	-	2	-	-	-	-	-	-	1	1	-	1	1
CO2	1	2	1	3	1	-	-	-	2	1	2	1	1	1
CO3	-	-	-	-	-	1	2	-	1	2	-	-	1	1
CO4	1	1	2	2	1	-	-	-	2	1	2	1	-	1
CO5	1	2	2	1	-	-	3	-	3	2	1	-	-	1
Total	4	5	5	6	2	1	5	-	8	7	6	2	3	5
Scalin g	1	1	1	1	1	1	1	-	1	1	1	1	1	1

0 -No relation1 - Low relation2 - Medium relation3 - High Relation

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Email: headeee@pmu.edu Keb: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Code	014	Sub.	Code	E 27	Su Nai	b. me	Micro Electro Mechanical Systems (MEMS)
Year	IV	Semes	ter	VII	Regu	lation	2015	Ma Ma	ax .rk	100
MODE OF H	EVALUATION	N & WEIG	HTAGI	E(%)		Cre	dit]	Hours/ Week
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P	,		3
15%	15%	20%	50%	100%	L =	= 45; T	= 0; P	[•] = 0;		Total = 45 hrs
Objective (s)	 To understar To Describe To give expo 	d the prope the design a psure to diffe	erties of and mod erent MI	material eling of EMS and	s ,micı Electro l NEM	rostructi ostatic s S devic	ure and ensors a es	fabri and a	icatio ctuat	on methods ors.
Unit- 1	MEMS:MIC MECHANIC	RO-FABR	ICATIO EPTS	DN, MA	TERL	ALS AI	ND EL	ECTI	RO-	09 hours
	Overview of micro fabrication – Silicon and other material based fabrication processes – Concepts: Conductivity of semiconductors-Crystal planes and orientation-stress and strain-flexural beam bending analysis-torsional deflections-Intrinsic stress- resonant frequency and quality factor.									
Unit- 2	ELECTROS	TATIC SE	NSORS	AND A	CTUA	ATION				09 hours
	Principle, ma sensors and a	terial, designation designatio	gn and plicatior	fabricati 1s.	on of	paralle	l plate	capao	citors	s as electrostatic
Unit- 3	THERMAL	SENSING .	AND A	CTUAT	ION					09 hours
	Principle, ma thermal resist	terial, desig or sensors-A	n and fa	abricatio ions.	n of tł	nermal (couples	, ther	mal	bimorph sensors,
Unit- 4	PIEZOELEO	CTRIC SEN	NSING A	AND A	CTUA	TION				09 hours
	Piezoelectric materials-App	effect-canti plications.	lever pi	ezo elec	etric a	ctuator	model-	prope	erties	of piezoelectric
Unit- 5	CASE STUD	IES								09 hours
	Piezoresistive applications,	e sensors, Optical ME	Magnet MSNE	ic actu MS Dev	ation, rices	Micro	fluidi	cs a	pplic	ations, Medical
Text Books:										
1.	Maluf, Nadin Techhouse, B	Maluf, Nadim "An introduction to Micro Electro-mechanical Systems Engineering "AR Techhouse, Boston 2000.								
2.	Marc F mado	u " Fundam	entals of	f micro f	abricat	tion" Cl	RC Pres	s 200)2 2n	d Edition
3.	Tai Ran Hsu, New Delhi, 2	"MEMS & 002.	Micro s	ystems I	Design	and Ma	nufactı	ıre" T	ata I	McGraw Hill,
4.	Julian w. Gar smart devices	dner, Vijay , John Wile	k. varad y & son	an, Osar LTD,20	na O.A 02	wadelk	arim,m	icro s	senso	ors mems and

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Reference Books:								
1.	ing Liu, "Foundations of MEMS", Pearson International Edition, 2006.							
2.	Boston, "Micromachined Transducers Sourcebook", WCB McGraw Hill, 1998.							
3.	M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.							
4.	Mohamed Gad – el – Hak "MEMS Handbook" Edited CRC Press 2002							

E27 –Micro Electro Mechanical Systems (MEMS) Course Outcomes (COs)

- 1. Integrate the knowledge of semiconductors and solid mechanics to fabricate MEMS devices
- 2. Apply the rudiments of Micro fabrication techniques.
- 3. Identify and Apply the various sensors and actuators.
- 4. Analyse different materials used for MEMS

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Code	014	Sub.	Code	E28	Sul Nar	b. ne	Disaster Management
Year	IV	Semes	ter	VIII	Regu	lation	2015	Ma Ma	ax rk	100
MODE OF I	EVALUATION & WEIGHTAGE (%) Hours/ Week									Credit
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	E E E E E E E E E E E E E E E E E E E)		3
15%	15%	20%	50%	100%	L =	45; T =	;	Total = 45 hrs		
Objective (s)	To increase the knowledge and understanding of the disaster phenomenon, its different contextual aspects, impacts and public health consequences. To ensure skills and abilities to analyze potential effects of disasters and of the strategies and methods to deliver public health response to avert these effects.									
Unit- 1	INTRODUC'	ΓΙΟΝ ΤΟ Ι	DISAST	ERS						08 hours
	Concepts, and definitions (Disaster, Hazard, Vulnerability, Resilience, Risks)							isks)		
Unit- 2	DISASTERS 12 hours									12 hours
	Classificatior psychosocial disability Gl change.	n Causes, Im , etc.) Diffe obal trends	pacts (ir erential i in urba	ncluding mpacts- n disast	social, in ter ers, pa	econom ms of c andemic	nic, polit caste, cl s, comj	tical, e lass, g plex e	envir gende emer	onmental, health, er, age, location, gencies, Climate
Unit- 3	APPROACE	IES TO DI	SASTE	R RISK	RED	UCTIC	N			09 hours
	Disaster cyc preparedness responsibilit (PRIs/ULBs	ele - its an s communi ies of - cu), states, Ce	alysis, I ty base ommuni entre, an	Phases, d DRR, ty, Pan d other s	Cultur Struc chayat stake-h	e of sa etural- i Raj l nolders.	fety, pr nonstrue Instituti	revent ctural ons/U	tion, nes Jrbar	mitigation and sures, roles and 1 Local Bodies
Unit- 4	INTER-REL DEVELOPM	ATIONSHI IENT	P B	ETWE	WEEN DISASTERS AND 10 hou					
	Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc. Climate Change Adaptation. Relevance of indigenous knowledge, appropriate technology and local resources.									
Unit- 5	DISASTER	RISK MAN	AGEM	ENT IN	IND	[A				06 hours
	Hazard and Vulnerability profile of India Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management Institutional arrangements (Mitigation, Response and Preparedness, DM Act and Policy, Other related policies, plans, programmes and legislation)									

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	Kapur, Anu& others, 2005: Disasters in India Studies of grim reality, Rawat Publishers, Jaipur.
2.	Environment Engineering and Disaster Management, Sanjay K. Sharma, 2011
3.	Disaster Management, Dr. MrinaliniPandey, WILEY INDIA PVT. LTD, 2010.
Reference Books:	
1.	Alexander David, Introduction in 'Confronting Catastrophe', Oxford University Press, 2000.
2.	Andharia J. Vulnerability in Disaster Discourse, JTCDM, Tata Institute of Social Sciences Working Paper no. 8, 2008.
3.	Govt. of India: Disaster Management Act 2005, Government of India, New Delhi.
4.	Government of India, 2009. National Disaster Management Policy.
5.	Gupta Anil K, Sreeja S. Nair. 2011Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi.

E28 Disaster Management Course Outcomes (COs)

- 1. **Analyze, evaluate** and manage the different public health aspects of disaster events at local and global levels, even when limited information is available.
- 2. **Describe, analyze** and **evaluate** the environmental, social, cultural, economic, legal and organisational aspects influencing vulnerabilities and capacities to facedisasters.
- 3. Obtain, **analyze**andcommunicate information on risks, relief needs and lessons learned from earlier disasters in order to formulate strategies for mitigation in future scenarios with the ability to clearly present and discuss their conclusions and the knowledge and arguments behind them.
- 4. **Design** and perform research on the different aspects of the emergencies and disaster events while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.
- 5. **Analyze** and **evaluate** research work on the field of emergencies and disaster while demonstrating insight into the potential and limitations of science, its role in society and people's responsibility for how it is used.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

2015_OBE [B.Tech. (PT)]

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

2015_OBE [B.Tech. (PT)]

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Department	Electrical & Electronics Engineering	Course	Code	014	Sub. Code		E32	Su Na	ıb. me	Solar and Energy Storage System
Year	IV	Semes	ter	VIII	Regulation2015Max Mark					100
MODE OF H	EVALUATION	N & WEIG	HTAGI	E(%)		Hours/	Week			Credit
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	3			
15%	15%	20%	50%	100%	L =	45; T =	= 00; P	= 00);	Total = 45 hrs
Objective (s)	To impart the Basic knowledge of semiconductors, cell properties and their interconnection. To understand the concept of solar modules and design of standalone PV system. To Deal with grid connected PV systems. To Discuss about different energy storage systems. To give exposure to different applications of PV systems and its storage systems.									
Unit- 1	INTRODUC	TION								09 Hours
	Characteristics of sunlight – Semiconductors and PN junctions – Behavior of solar cells – Cell properties – PV cell interconnection.									
Unit- 2	STANDALO	STANDALONE PV SYSTEM09 Hours								
	Solar module Stand alone P	s – Storage V systems o	e system lesign –	ns – Pov Sizing.	wer co	ondition	ing and	reg	ulatio	on - Protection –
Unit- 3	GRID CONN	NECTED P	V SYST	TEMS						09 Hours
	PV Systems in buildings – Design issues for central power stations – Safety – Economic aspect – Efficiency and performance - International PV programs.								afety – Economic	
Unit- 4	ENERGY ST	TORAGE S	YSTEN	1S						09 Hours
	Battery Basics, Different types, Battery Parameters, Battery modeling, Traction Batteries - Impact of intermittent generation – Energy storage in battery – Solar thermal energy storage – Pumped hydroelectric energy storage									
Unit- 5	APPLICATI	ONS								09 Hours
	Water pumpi – Telecommu	ng – Batte nications.	ery char	rgers –	Solar	car –	Direct-	drive	e app	olications –Space
Text Books:										
1.	Eduardo Lo Systems, Prog	renzo G. gensa.	Araujo,	1994.	Solar	Electri	cityEng	ineer	ring	of Photovoltaic
2.	Stuart R.Wei AppliedPhoto	nham, Mar voltaics, Ea	tin A.C rthscan,	Green, I UK.	Muriel	E. Wa	att and	Ric	hard	Corkish, 2007.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Reference Books:	
1.	Frank S. Barnes and Jonah G. Levine, 2011. Large Energy Storage Systems Handbook, CRC Press.
2.	McNeils, Frenkel and Desai, 1990. Solar & Wind energy Technologies, Wiley Eastern.
3.	Sukhatme, S.P., 1987. Solar Energy, New Delhi: Tata McGraw-Hill.

E32 –Solar and Energy Storage System Course Outcomes (COs)

- 1. **Recognize and reproduce** Basic knowledge of semiconductors, cell properties and their interconnection.
- 2. Gain theknowledgein the solar modules & system and **design** the standalone PV system for specific applications.
- 3. Classify the various PV systems in buildings and manage the issues for central power stations.
- 4. **Define** the various types of energy storage systems.
- 5. **Employ** different applications of PV systems and its storage systems.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Code	014	Sub. Code E33		E33	Sı Na	ıb. me	Sustainable Energy Utilization
Year	IV	Semes	ter	VII	Regulation2015Max Mark				100	
MODE OF I	EVALUATION	ON & WEIGHTAGE (%)CreditHo							Hours/ Week	
CA 1	CA 2	CA 3	CA 4	Total	L T P 3 0 0			3		
15%	15%	20%	50%	100%	L =	= 45; T	= 0; P	= 0:		Total = 45 hrs
Objective (s)	To discuss the utilization of energy in the present day society, taking into account sustainability and environmental aspects. To focus on the technologies used to meet a wide spectrum of energy demands needed for cooling heating and ventilation in the built environment									
Unit- 1	HEAT FLOV	W CALCUI	LATIO	NS IN B	UILD	INGS				09 hours
	Unsteady hea	at flows the	rough v	valls, ro	of, w	indows	etc.]	Direc	et he	at gains through
	windows. Con	nvective gai	ns/losse	s, air ex	change	e rates.	Gains fi	om j	peopl	e, appliances etc.
	Air condition	ing load cal	culation	s NDICC						00.1
Unit-2	NEED OF ENERGY IN BUILDINGS 09 hours									
	Role of build	ling design	and bu	ilding s	ervices	s to eva	aluate t	he e	nergy	y performance in
	Environmenta	al science	of buil	dings -	Study	v of T	'hermal	env	vironi	ment and visual
	environment	- Heat gai	in and h	neal loss	pheno	menon	of buil	ding	s -	Role of building
	enclosures, op	penings and	materia	ls in the	rmal e	nvironr	nent -E	nerg	y effi	cient light design
	of buildings -	Design for	visual E	nvironm	ent. E	nergy ra	ating of	buil	lings	
Unit- 3	PASSIVE CO	DOLING / 1	HEATI	NG CO	NCEP	ТS				09 hours
	Building form and orientation, internal and external shading devices, ventilation, passive concepts for composite climates, evaporative and nocturnal cooling, earth–air tunnel, sky-thermal system, and solar chimney-based hybrid system.Introduction and use of different building simulation software such as TRNSYS, ECOTECT etc. Case studies of non-air conditioned and air conditioned buildings.									
Unit- 4	ENERGY EI	FFICIENT	BUILD	INGS						09 hours
	Introduction resources and evaluation, T building comp	- Definition d needs of Thermal Co ports, IAQ r	and co modern mport equirem	ncepts, 1 living improve ents.	Energy - E ment	and W Envelop method	later as heat lo ls, Opti	a re oss a imun	esoure and h n pe	ce,- Criticality of neat gain and its rformance, other
Unit- 5	ELECTRICA	AL ENERY	CONS	ERVAT	TION					09 hours
	Opportunities sustainable Buildings, Ra Eco-housing	and Tech resources, ating of Bui concepts and	niques process ldings, d Nation	for ener and Efficien	rgy co Techn t Use nternat	onservat ologies of Build ional no	ion in . Gree dings, S orms.	Bui n 1 Solar	lding Build Pass	s - Adoption to ings, Intelligent sive Architecture,

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91- 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1.	Koenigsberger, et.al Manual of Tropical housing and Building Longman Group Ltd
	London (now published by Orient Longman Ltd, Madras, India),1974.
2	Oliver and Daniel, D Chiras Natural Resource Conservation Management for a
2.	sustainable future, Prentice Hall International Ltd, London, 1992.
3	USAID International resource book, Energy Conservation Building design Tip Sheet -
5.	Building Lighting Design.
4	MS Sodha, NK Bansal, PK Bansal, A Kumar and MAS Malik, Solar Passive Building,
+.	Science and Design, Pergamon Press, 1986.
5.	JR Williams, Passive Solar Heating, Ann Arbar Science, 1983.
D C	
Reference	
Reference Books:	
Reference Books:	RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray,
Reference Books:	RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS-
Reference Books: 1.	RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS-0127/3), 1982.
Reference Books:	 RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS-0127/3), 1982. J Krieder and A Rabi, Heating and Cooling of Buildings: Design for Efficiency,
Reference Books: 1. 2.	 RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS-0127/3), 1982. J Krieder and A Rabi, Heating and Cooling of Buildings: Design for Efficiency, McGraw-Hill, 1994.
Reference Books: 1. 2.	 RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS- 0127/3), 1982. J Krieder and A Rabi, Heating and Cooling of Buildings: Design for Efficiency, McGraw-Hill, 1994. RD Brown, TJ Gillespie, Microclimatic Landscape Design, John Wiley and Sons, New
Reference Books:1.2.3.	 RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS-0127/3), 1982. J Krieder and A Rabi, Heating and Cooling of Buildings: Design for Efficiency, McGraw-Hill, 1994. RD Brown, TJ Gillespie, Microclimatic Landscape Design, John Wiley and Sons, New York, 1990.
Reference Books: 1. 2. 3. 4.	 RWJones, JD Balcomb, CE Kosiewiez, GS Lazarus, RD McFarland and WOWray, Passive Solar Design Handbook, Vol 3, Report of US Department of Energy (DOE/CS- 0127/3), 1982. J Krieder and A Rabi, Heating and Cooling of Buildings: Design for Efficiency, McGraw-Hill, 1994. RD Brown, TJ Gillespie, Microclimatic Landscape Design, John Wiley and Sons, New York, 1990. TA Markus, EN Morris, Building, Climate and Energy, SpottwoodeBallantype Ltd,

E33 – Sustainable Energy Utilization Course Outcomes (COs)

- 1. **Understand** and explain the physics that govern an indoor climate, and assess the changes needed to improve the indoor climate in existing buildings.
- 2. **Perform** heating/cooling load calculations for a single family residence.
- 3. Understand and describe different types of heating systems, and assess their applicability.
- 4. **Understand** and describe the function of passive systems and **discuss** about alternative cooling processes.
- 5. **Recognize** need of energy in building and various conservation techniques to use energy in sustainable manner.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

]	NAAC AC	CREDIT	ED		
Department	Electrical & Electronics Engineering	Course	Code	014	Sub. CodeE34Sub. Name		Special Electrical Machines			
Year	IV	Semes	ter	VII	I Regulation 2015 Max Mark				ax ark	100
MODE OF I	EVALUATION & WEIGHTAGE (%) Hours/ Wee									Credit
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0	P 0		3
15%	15%	20%	50%	100%	L =	45; T	= 00; F) = 00	0;	Total = 45hrs
Objective (s)	(b) (b) (b) (b) (c) /b>									
Unit – 1	SYNCHRON	NOUS REL	UCTAN	ICE MO	OTOR	S				09 hours
	Constructional features – types – axial and radial air gap motors – operating principle – reluctance – phasordiagram - characteristics – Vernier motor.									
Unit –2	STEPPING	MOTORS								09 hours
	Constructional features – principle of operation – variable reluctance motor – Hybrid motor – single and Multi stack configurations – theory of torque predictions – linear and non-linear analysis – characteristics –closed loop control - drive circuits.									
Unit –3	SWITCHED	RELUCT	ANCE N	NOTOF	RS					09 hours
	Constructiona Nonlinear and	al features – alysis – Mic	principl roproces	e of ope ssor base	ration ed cont	– torque trol –clo	e predic sed loo	tion p cor	– pov ntrol	wer controllers – - characteristics.
Unit –4	PERMANEN	NT MAGN	ET BRU	ISHLES	SS DC	MOTO	RS			09 hours
	Principle of o Torque Speed	peration –E l characteris	MF and stics – Co	Torque ommuta	equati tion lo	ons – Ty gic - Co	ypes of ntrol.	Powe	er Co	ontrollers –
Unit –5	PERMANEN	NT MAGN	ET SYN	CHRO	NOUS	MOTO	ORS			09 hours
	Principle of o controllers - c microprocess	peration – H converter - v or based con	EMF and volt-amp ntrol.	l torque ere requ	equation iremer	ons – rea nts – tore	actance que spe	– ph ed ch	asor Iarac	diagram – power teristics -

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Text Books:	
1	Miller, T.J.E., 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon
1.	Press, Oxford, 1989.
2	Aearnley, P.P., 'Stepping Motors – A Guide to Motor Theory and Practice', Peter
	Perengrinus, London, 1982.
3	P.P. Aearnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Peter
5.	Perengrinus, London, 1982.
1	R.Krishnan, 'Switched Reluctance Motor Drives – Modeling, Simulation, Analysis,
7.	Design and Application', CRC Press, New York, 2001.
Reference	
Books:	
1	Kenjo, T., 'Stepping Motors and their Microprocessor Controls', Clarendon Press
1.	London, 1984.
	Kenjo, T., and Nagamori, S., 'Permanent Magnet and Brushless DC Motors', Clarendon
2.	Press, London, 1988.
3.	K. Dhayalini, 'Special Electrical Machines', Anuradha Publications.
4.	S.AlbertAlexander,J.Gnanavadivel, "Special Electrical Machines", Anuradha Publications.

	E34–Special Electrical Machines Course Outcomes (COs)							
At the end of the course, the students will be able to								
1. A	ble to know the construction and working of synchronous motor.							
2. D	escribe the construction and working of stepping motor.							
3. A	nalyze the control and performance of stepping motor.							
4. U	nderstand the construction, working and performance of switched reluctance motor.							
5. I I	lustrate the different types of power controllers of switched reluctance motor							
6. E z	xplain the construction and working of permanent magnet dc and synchronous motor							
7. H	andle the microprocessors based control using Permanent magnet synchronous motor.							

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660

Email: headee	e@pmu.edu 1 o	Web: www. pr	mu.edu			Unde	er Sec. 3 of UG	C Act, 19	956	Tanovale - Iran	
Department	Electronics Engineering	Course	Code	014	Sub. Code E35 Name				Energy Management and Auditing		
Year	IV	Semes	ter	VII	Regulation2015Max Mark					100	
MODE OF H	EVALUATION	N & WEIG	HTAGI	E(%)		Hours/	Week			Credit	
CA 1	CA 2	CA 3	CA 4	Total	L 3	L T P 3 0 0				3	
15%	15%	20%	50%	100%	L =	45; T	= 00; F	• =00);	Total = 45 hrs	
Objective (s)	TostudytheconceptsbehindeconomicanalysisandLoadmanagement.Toemphasize theenergymanagementonvariouselectricalequipmentsand metering.Toillustratetheconcept of lighting systems and cogeneration.										
Unit- 1	INTRODUC	TION								09 hours	
	Need for ex management energyaudit	Need for energy management - energy basics- designing and starting an energy managementprogram-energyaccounting-energymonitoring,targetingandreporting-energyauditprocess.									
Unit- 2	ENERGYCO	ENERGYCOSTAND LOADMANAGEMENT 09 hours									
	Important concepts in an economic analysis-Economic models-Time value of money- Utility rates tructures- cost of electricity-Loss evaluation Load management: Demand control techniques-Utility monitoring and control system- HVAC and energy management										
Unit- 3	ENERGYM ELECTRIC	ANAGEM AL EQUIP	ENTFO MENT	R MOI	ORS,	SYSTE	EMS,AI	ND		09 hours	
	Systems and equipment- Electric motors-Transformers and reactors-Capacitors and synchronousmachines-Energy management in industrial drive.										
Unit- 4	METERING	FOR ENE	RGYMA	ANAGE	MEN	Γ				09 hours	
	Relationshipsbetweenparameters-Unitsofmeasure-Typical costfactors- Utilitymeters- Timingofmeterdiscforkilowattmeasurement-Demandmeters-Parallelingofcurrent transformers-Instrumenttransformer burdens-Multitaskingsolid-statemeters-Metering locationvs.requirements.										
Unit- 5	LIGHTINGS	SYSTEMS								09 hours	
	Conceptoflig Luminaries- harmonicson standards.	ghtingsysten Lightingcon power qua	ns-Theta trols-Op lity- Co	skandth otimizing st analy	eworki glightin sistech	ingspaceng ngenerg niques-	e-Lights y-Powe Lightin	sourc rfact gand	es-Ba oranc energ	allasts- leffectof gystandards-BEE	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Text Books:	
1	BarneyL.Capehart,WayneC.Turner,andWilliamJ.Kennedy, 'GuidetoEnergy
1.	Management',FifthEdition,TheFairmontPress,Inc.,2006
2	EastopT.D &Croft D.R, Energy Efficiency for Engineers and Technologists,.
۷.	LogmanScientific&Technical,ISBN-0-582-03184,1990.
Reference	
Books:	
1.	ReayD.A, 'Industrial EnergyConservation',1 st edition,PergamonPress,1977.
2	IEEERecommendedPracticefor EnergyManagementinIndustrialand Commercial
2.	Facilities,IEEE,196.
3.	Amit K.Tyagi, 'HandbookonEnergyAuditsandManagement', TERI, 2003.

E 35 Energy Management and Auditing Course Outcomes (COs)

- 1. **Understand** the need and necessity of energy audit and energy conservation.
- 2. Analyze different phase of energy audit and to implement the techniques.
- 3. **Study** the operation of different energy audit instruments.
- 4. **Designing** and implementing energy audit methodology in a plant.
- 5. Location of proper energy audit instrument in the plant to minimize the energy consumption
- 6. **Operate** the equipment to minimize the energy consumption and peak demand.
- 7. **Optimal** utilizing of lighting in domestic and industrial area and improvement of power factor in a system.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	EEE	Cours	e Code	014	Sub. C	Code	E36	Sub. Namo	e Signals and Systems
Year	III	Sem	ester	V	Regula	ation	2015	Max Marl	x 100
MODE OF E	VALUATIO	N & WEI	GHTAG	E (%)		Cre	edit		Hours/ Week
CA 1	CA 2	CA 3	CA 4	Total	L 3	T 0	P 0		3
15%	15%	20%	50%	100%	L =	45; T	r = 00;	P =00;	Total = 45hrs
Objective (s)	Djective (s) To study and analyze the characteristics, properties and representation of continuous, discrete signals and systems. To Understand the analysis and synthesis of discrete time systems. To execute the sampling process and analysis of discrete systems using z-transforms and exploit them.								
Unit- 1	CLASSIFI	CATION	OF SIG	NALS A	ND SYS	STEM	IS		09 hours
	Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - periodic and periodic, random signals, CT systems and DT systems, Basic properties of systems.								
Unit- 2	ANALYSIS	S OF CON	NTINUO	US TIM	E SIGN	IALS			09 hours
	Fourier serie LaplaceTrar	es analysis nsform in l	s, Spectru Signal Ar	m of C.7 nalysis.	C. signals	s, Fou	rier Tra	nsform	and
Unit- 3	LINEAR T	IME INV	ARIAN	Γ - DISC	CRETE '	TIMF	E SYST	EMS	09 hours
	Differential equation, Block diagram representation, Impulse response, Convolution and Correlation concept, frequency response, Fourier and Laplace transforms in analysis.								
Unit- 4	ANALYSIS	5 OF DIS	CRETE '	TIME S	IGNAL	S			09 hours
	Sampling of and properti	CT signates of Z-tra	ls and and national la l	tialiasing	g Filter d	esign,	DTFT	and pro	operties, Z-transform
Unit- 5	LINEAR T	IME INV	ARIAN	Γ - DISC	CRETE '	TIMF	E SYST	EMS	09 hours
	Difference e Convolution representation	equations, isum,LTI on of syste	Block dia systems a ems.	agram re malysis u	presenta 1sing DT	tion, I TFT, S	mpulse tate var	respon iable eo	se, quations andmatrix

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

Text Books:	
1	Allan V.Oppenheim, S.Wilsky and S.H.Nawab -2007, -Signals and Systems, Pearson
1.	Education,.
2	Edward W Kamen& Bonnie's Heck2007, -Fundamentals of Signals and Systems,
2.	Pearson Education.
3.	Simon Haykins and Barry Van Veen,2004- Signals and Systems John Wiley & sons, Inc.
	Rodger E. Ziemer, William H. Tranter, D. Ronald Fannin. 2002-Signals and Systems,
4.	fourth Edition, Pearson Education,.
Reference	
Books:	
1	H P Hsu, Rakesh Ranjan, 2007 - Signals and Systems, Schaum's Outlines, Tata McGraw
1.	Hill, Indian Reprint,
2	S.Salivahanan, A. Vallavaraj, C. Gnanapriya, 2007, -Digital Signal Processing, McGraw
<i>2</i> .	HillInternational ,TMH,
3	Robert A. Gabel and Richard A.Roberts, 1987 -Signals and Linear Systems, John Wiley,
5.	III edition.
4	J.G.Prokiis and D.G. Manolakies, 1989-Introduction to Digital Signal Processing
4.	,MacMillan Publishing company.

E36 –Signals and Systems
Course Outcomes (COs)

- 1. **Calculate** Fourier transforms for continuous-time and discrete-time signals (or) impulse-response functions.
- 2. Interpret the sampling theorem and how it links continuous-time signals to discrete-time signals.
- 3. **Investigate**—the Laplace and Z transforms—to treat a class of signals broader than what the Fourier transform can handle.
- 4. **Evaluate** the reasonably-accurate mathematical models for physical systems and **recognize** the LTI approximations to the models.
- 5. Learn to develop and **analyze** state-space models of linear and nonlinear systems.

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Course Code 014 Sub. Code E37 Sub. Name D Max Max										
Year	III	Semes	ter	V	Regu	lation	2015	M Ma	ax ark	100			
MODE OF H	EVALUATIO	N & WEIG	HTAGI	E(%)		Cre	dit			Hours/ Week			
CA 1	CA 2	CA 3	CA 4	Total		T 0	P			3			
15%	15%	20%	50%	100%	L =	45; T	= 00; F	P = 00);	Total = 45hrs			
Objective (s)	This course v strengthen the to three majo processing, an	will treat a e student's u or application nd provide e	broad ra inderstation areas extensive	ange of nding of : speech e hands-	Digita the fo proce	l Signal oundatic ssing in ign expe	l Proces ons of E mage pr erience	ssing DSP, roces	(DS intro ssing	SP) topics. It will duce the students and array signal			
Unit- 1	INTRODUC	TION								09 hours			
	Characterizati dimensional - Concepts of processing co	Characterization and classification of signals - examples of signals – multichannel –multi- imensional - continuous versus discrete - analog versus digital - concept of frequency. Concepts of signal processing - typical applications - advantages of digital signal rocessing compared with analog processing											
Unit- 2	DISCRETE	TIME SYS	TEMS .	ANALY	SIS					09 hours			
	Representatio transfer funct	ons-classific: ions – Conv	ations - olution	time do Z-trans	omain sform a	and fre and Inve	quency erse Z- t	dom ransf	ain form	characterization - applications.			
Unit- 3	FREQUENC	Y ANALY	SIS OF	SIGNA	L					09 hours			
	Analysis of computation transform-pro Fourier transf	analog an of DFT. I operties of tr forms-Radix	d discr Fourier cansform 2. FFT	ete sign transfor ns-comp algorith	nals-us m of utation ms - ci	ing Fo discrete of DIT rcular c	ourier seque and D onvolut	series ence IF-co tion	s, Fo and ompu	burier transform, discrete Fourier station of discrete			
Unit- 4	DESIGN ANALOG AND DIGITAL FILTERS 09 hours												
	Sampling of continuous signals-analog filter design-anti aliasing filters-sample and hold circuit-reconstructing filters-Block diagram representation – IIR and FIR structures												
Unit- 5	DIGITAL SI	GNAL PR	OCESS	ORS						09 hours			
	Introduction commercial p memory orga general purpo	- Block dia processors (nization, pro pse processo	agram a TMS 3 Ogram m r	and cons 02 C 54 nemory a	structio IX pro address	on. Inst ocessors sing. Co	ruction) Techi mpariso	and nique on b/ [,]	add s of w DS	ressing of Texas 'C54X' Internal SP processors and			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Text Books:	
1	S.K. Mitra, 'Digital signal processing-A Computer based approach', Tata McGraw-Hill
1.	Edition, 1998
2.	Alan V Oppenheim, Ronald W.Schafer, "Digital Signal Processing", Prentice Hall, 1975.
3	S. Salivahanan, A. Vallavaraj and C. Gnanapriya., "Digital Signal Processing" Tata
5.	McGraw-Hill Edition, 2006.
1	E.C. Ifeachor and B.W. Jervis, "Digital signal processing - A practical approach", Second
4.	edition, Pearson, 2002
Reference	
Books:	
1.	Lonnie C. Lumen, 'Fundamentals of Digital Signal Processing', John Wily and Sons, 1987
2	J.G. Prookis and D.G. Manolakis, 'Introduction to Digital Signal Processing', Macmillan.
2.	Publishing company, 1989.
3.	R.G.Lyons, 'Understanding Digital Signal Processing', Addison Wesley, 1997
4.	Johny R. Johnson, Introduction to Digital Signal Processing, PHI, 2006.

E37 – Digital Signal Processing Course Outcomes (COs)

- 1. **Discuss** to represent real world signals in digital format and understand transform-domain (Fourier and z-transforms) representation of the signals.
- 2. **Design** the linear systems approach to signal processing problems using high-level programming language.
- 3. Understand the basic architecture of microprocessors and digital signal processors.
- 4. **Develop** to linearfilters in real-time DSP chips.
- 5. Describe the applications of linear filters and their real-time implementation challenges

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: + 91 - 4362 - 264600 Fax: + 91- 4362 - 264660 Email: headeee@pmu.edu Web: www. pmu.edu

Department	Electrical & Electronics Engineering	Course	Code	014	Sub.	Code	E38	Su Nar	b. ne	HVDC Transmission			
Year	III	Semes	ter	V	Regu	lation	2015	Ma Ma	ax rk	100			
MODE OF E	EVALUATION	N & WEIG	HTAGI	E(%)		Cre	dit		I	Iours/ Week			
CA 1	CA 2	CA 3	CA 4	Total	L	T	P			3			
1.50/	1.50/	2004	500/	1000/	3	0							
15%	15%	20%	50%	100%	L =	45; T :	= 00; P	' = 00	;	Total = 45hrs			
Objective (s)	To impart knows steady state an	owledge on alysis of A	operatio C/DC sy	n, mode ∕stem.•	lling aı To exp	nd conti oose vai	rol of H rious HV	VDC VDC	link. simu	• To perform lators.•			
Unit- 1	DC POWER	TRANSM	ISSION	TECH	NOLO	GY				06 hours			
	Introduction - – Description trends in DC	Compariso of DC trar transmission	n of AC Ismissio 1 – DC t	and DC and DC n system oreakers	C transı n - Pla – Cabl	nission nning f es, VSC	– Appl or HVI C based	icatio DC tra HVD	on of ansm OC.	DC transmission ission – Modern			
Unit- 2	ANALYSIS CONTROL	LYSIS OF HVDC CONVERTERS AND HVDC SYSTEM12 hoursVTROL12 hours											
	Pulse number Converter bri analysis of c characteristics angle control controllers.	r, choice of dge charact converters- s – System – Generati	converte eristics General control l on of h	er config – chara l princip nierarchy armonic	guration cteristi ples of y - Firi s and	n – Sim cs of a E DC 1 ng angl filtering	plified twelve ink con e contro g - pow	analy puls ntrol ol – C ver co	sis of se co – C Curren Curren	f Graetz circuit - nverter- detailed onverter control nt and extinction I – Higher level			
Unit- 3	MULTITER	MINAL DO	CSYST	EMS						09 hours			
	Introduction Control and p	 Potential rotection of 	applicat MTDC	tions of systems	MTDO - Stud	C syste y of M	ms - Т ГDC sy	ypes stems	of M s.	ITDC systems -			
Unit- 4	POWER FLOW ANALYSIS IN AC/DC SYSTEMS 09 hours												
	Per unit syste Solution of A method.	Per unit system for DC Quantities - Modelling of DC links - Solution of DC load flow - Solution of AC-DC power flow – Unified, Sequential and Substitution of power injection nethod.											
Unit- 5	SIMULATIO	ON OF HVI	DC SYS	TEMS						09 hours			
	Introduction Philosophy a Dynamic inte	– DC LINK nd tools – ractions bet	K Model HVDC ween D0	lling , C system C and A	Convert simula C syste	er Mod tion, O ms	leling a nline a	nd St nd O	tate S FFlir	Space Analysis , ne simulators —			

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Reference Books:	
1	P. Kundur, "Power System Stability and Control" McGraw-Hill 1993
2.	K.R.Padiyar, , "HVDC Power Transmission Systems", New Age International (P) Ltd., New Delhi, 2002.
3.	J.Arrillaga, , "High Voltage Direct Current Transmission", Peter Pregrinus, London, 1983.
4.	Erich Uhlmann, "Power Transmission by Direct Current", BS Publications, 2004.
5.	V.K.Sood,HVDC and FACTS controllers – Applications of Static Converters in Power System, APRIL 2004, Kluwer Academic Publishers.

E38 – HVDC Transmission Course Outcomes (COs)

- 1. **Discuss** to represent real world signals in digital format and understand transform-domain (Fourier and z-transforms) representation of the signals.
- 2. **Design** the linear systems approach to signal processing problems using high-level programming language.
- 3. Understand the basic architecture of microprocessors and digital signal processors.
- 4. **Develop** to linearfilters in real-time DSP chips.
- 5. Describe the applications of linear filters and their real-time implementation challenges

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	1	1	2	-	-	1	-	-
CO2	3	3	-	3	3	3	-	3	-	1	3	-
CO3	2	-	-	-	2	2	2	3	-	-	-	-
CO4	-	1	3	-	-	1	-	-	1	-	-	-
CO5	-	-	1	-	3	-	-	2	-	-	-	-

E11 –Design of Electrical Apparatus

E 12 – Control and Maintenance of Electrical Machines

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2	1	-	1	1	-	-	1	-	-
CO2	2	1	1	1	-	3	-	-	1	1	-	-
CO3	1	-	-	-	1	3	1	-	1	1	-	-
CO4	1	1	2	2	-	2	-	-	1	1	-	-
CO5	1	1	-	-	-	3	3	-	1	2	-	-
CO6	1	1	1	1	2	2	2	-	1	2	-	-
CO7	2	-	1	-	-	1	1	1	-	-	-	-
1- Slig	htly			2 –	Suppo	ortive			3 – Hi	ghly rel	ated	

E13 – Advanced Control System Engineering

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	1	-	-	-
CO2	3	1	2	3	-	-	-	-	-	-	-	-
CO3	3	1	-	3	1	-	-	-	-	-	-	-
CO4	3	3	-	1	1	-	-	-	-	3	-	2
CO5	3	2	1	3	-	-	-	-	1	1	-	-
1- Slig	htly			2 –	Suppo	rtive			3 – Hi	ghly rel	ated	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E14 - Digital Logic Circuits

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	3	3	-	-	-	3	2	3	1
CO2	3	3	1	3	3	-	-	-	2	3	3	3
CO3	3	3	2	3	3	-	-	1	3	3	3	2
CO4	-	-	-	-	-	-	-	-	1	-	-	-
CO5	2	2	1	2	2	-	-	-	2	2	2	2
1- Slig	htly				2	– Supp	ortive			3 - Hightarrow Hight	ghly rela	ated

E16 – Industrial Automation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1			2	2	-		-			-	-
CO2	-	2	2	3	-	-	1	-			1	-
CO3		1	1	-		-	-	-	-	-	1	2
CO4	-	1		2	3	-	-	-			1	-
CO5	-	2	-	1	1	2		-				-
CO6		2	-	1	3	-	2	-				-

1-Slightly

2 – Supportive

3 - Highly related

E17 – Bio Medical Instrumentation

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	-	-	-	-	3	1	-	-	-
CO2	2	2	2	1	-	-	-	-	-	-	-	-
CO3	2	2	-	1	2	-	-	-	-	-	-	-
CO4	2	3	-	1	-	-	-	-	-	-	-	-
CO5	2	2	1	1	-	-	1	-	1	-	-	-
CO6	-	-	3	-	-	-	2	2	-	-	2	2
CO7	-	-	3	-	-	3	3	-	-	-	-	-
CO8	1	2	-	3		-	2	-	-	2	-	-
CO9	1	1	-	3	2	-	-	-	-	-	-	-
CO10	2	2	1	3	3	-	-	-	-	-	-	2
1- Sligh	tly			2-3	Suppor	tive		,	3 – Hig	ghly rela	ited	

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

EE 18 – Smart Grids

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	2	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	-	-	-	3	-	3	2	1	-
1- Slig	htly			2 –	Suppo	ortive			3 – Hi	ghly rel	ated	

E21– Power Electronics for Renewable Energy Systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	2	-	3	-	2	1	-	-
CO2	2	2	-	1	1	2	3	-	-	-	2	-
CO3	1	3	-	3	-	2	2	-	2	-	1	1
CO4	-	3	-	1	2	1	-	2	-	-	2	-
CO5	-	3	-	-	1	-	-	1	1	1	1	-
CO6	1	-	3	3	-	-	2	-	-	-	-	-
CO7	1	2	3	1	-	-	-	1	-	-	-	-

1-Slightly

2 – Supportive

3 – Highly related

E 22 – Wind EnergyConversionSystems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	2	2	3	-	-	-	3	2	3	1
CO 2	3	2	1	1	2	-	-	-	2	3	3	3
CO 3	3	3	2	3	2	-	-	1	3	3	3	2
CO 4	-	-	-	1	-	-	-	-	1	-	-	_

1-Slightly

2 – Supportive

3 - Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fmail: headeee @pmu.edu

 Web: www. pmu.edu

PERIYAR MANIAMMAI UNIVERSITY Under Sec. 3 of UGC Act, 1956 NAAC ACCREDITED

E23 -Pollution Performance of Power Apparatus and Systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	2	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	-	-	-	3	-	3	2	1	-
CO6	1	-	-	1	2	-	2	-	1	2	3	-
CO7	-	-	-	-	-	-	1	1	-	-	-	-
1- Slig	ghtly			2 –	Suppor	tive	3	– High	ly relate	d		

E24 - Renewable Energy Technology

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2	-	1	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	1	-	-	-	-	-	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	_	-	-	3	-	3	2	1	-

1- Slightly

2 – Supportive

3 - Highly related

E 25 – Electrical Power Quality

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	2	1	2	-	-	-	-	-
CO2	1	1	2	3	2	1	1	-	-	-	-	-
CO3	2	1	1	2	1	1	1	-	-	-	-	-
CO4	1	2	2	2	1	-	1	-	-	-	-	-
CO5	1	1	1	1	1	1	-	-	-	-	-	-
CO6	1	1	3	1	1	-	1	-	-	-	-	-
CO7	1	1	2	2	-	-	1	-	-	-	-	-
1 01. 1	1			•	a				o			

1- Slightly

2 – Supportive

3 – Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fmail: headeee @pmu.edu

 Web: www. pmu.edu

E 26 – Microprocessors and Microcontrollers

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	-	-	-	-	-	1	1	-
CO2	1	2	1	3	1	-	-	-	2	1	2	1
CO3	-	-	-	-	-	1	2	-	1	2	-	-
CO4	1	1	2	2	1	-	-	-	2	1	2	1
CO5	1	2	2	1	-	-	3	-	3	2	1	-
1- Slig	htly			2 –	Suppo	ortive			3 – Hi	ghly rel	ated	

E 27 – Micro Electro Mechanical Systems (MEMS)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	-	-	-	-	-	1	1	-
CO2	1	2	1	3	1	-	-	-	2	1	2	1
CO3	-	-	-	-	-	1	2	-	1	2	-	-
CO4	1	1	2	2	1	-	-	-	2	1	2	1

1-Slightly

2 – Supportive

3 – Highly related

E 28Disaster Management

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2	-	1	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	1	-	1	-	2	-	-	1	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	-	2	-	3	-	3	2	1	-

1-Slightly

2 – Supportive

3 – Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu

 Web: www. pmu.edu

E32 – Solar and Energy Storage System

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	2	1	2	-	-	-	-	-
CO2	1	1	2	3	2	1	1	-	-	-	-	-
CO3	2	1	1	2	1	1	1	-	-	-	-	-
CO4	1	2	2	2	1	-	1	-	-	-	-	-
CO5	1	1	1	1	1	1	-	-	-	-	-	-

1- Slightly

2 – Supportive

3 – Highly related

E33 – Sustainable Energy Utilization

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	1	2	1	-	-	-	-	-	-
CO2	2	3	-	1	-	-	2	1	-	-	-	-
CO3	-	-	3	-	2	1	1	1	2	-	-	-
CO4	1	2	2	-	-	3	1	-	-	1	-	-
CO5	-	2	3	2	3	1	-	1	-	-	-	-
1- Slig	htly		2 - 5	Suppor	tive		3	3 – Hig	hly rel	ated		

E34 – Special Electrical Machines

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	-	-	-	-	-	1	1	-
CO2	1	2	1	3	1	-	-	-	2	1	2	1
CO3	-	-	-	-	-	1	2	-	1	2	-	-
CO4	1	1	2	2	1	-	-	-	2	1	2	1
CO5	1	-	2	-	-	-	-	-	-	1	1	-
CO6	1	2	1	3	1	-	-	-	2	1	2	1
CO7	-	-	-	-	-	1	2	-	1	2	-	-

1- Slightly

2-Supportive

3 - Highly related

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264660

 Email: headeee@pmu.edu
 Web: www. pmu.edu

E35 - Energy Management and Auditing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2	-	1	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	1	-	-	-	-	-	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	-	-	-	3	-	3	2	1	-
CO6	1	-	-	1	2	-	2	-	1	2	3	-
CO7	-	-	-	-	-	-	1	1	-	-	-	-
CO6 CO7	1 -	-	-	-	2	-	2 1	- 1	1	2	3	

1-Slightly

2 – Supportive

3 – Highly related

E36 - Signals and Systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	2	-	1	-	3	-	2	1	-	-
CO2	-	-	-	1	-	-	-	-	2	1	2	-
CO3	1	-	1	-	-	-	-	-	-	-	-	-
CO4	-	-	2	2	-	-	-	-	2	1	2	-
CO5	-	-	-	-	-	-	3	-	3	2	1	-

1- Slightly

2 – Supportive

3 – Highly related

E 37 – Digital Signal Processing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	3	-	-	-	-	-	-	-	-
CO3	1	3	-	3	1	-	-	-	-	-	-	-
CO4	2	2	-	1	1	-	-	-	-	-	-	-
CO5	2	1	1	3	-	-	-	-	-	-	-	-

1- Slightly

2 – Supportive

 $3-Highly\ related$

 Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India

 Phone: + 91 - 4362 - 264600

 Fax: + 91 - 4362 - 264600

 Email: headeee@pmu.edu

 Web: www. pmu.edu

NAAC ACCREDITED

E 38 – HVDC Transmission

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	3	-	-	-	-	-	-	-	-
CO3	1	3	-	3	1	-	-	-	-	-	-	-
CO4	2	2	-	1	1	-	-	-	-	-	-	-
CO5	2	1	1	3	-	-	-	-	-	-	-	-

1-Slightly

2 – Supportive

3 - Highly related